matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegrationIntegral mit Substitution
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Integration" - Integral mit Substitution
Integral mit Substitution < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integral mit Substitution: Tipp
Status: (Frage) beantwortet Status 
Datum: 18:12 So 28.12.2008
Autor: stefan00

Aufgabe
Seien a < b [mm] \in \IR [/mm] so gewählt, dass die folgenden Integrale definiert sind.
Bestimmen Sie die Integrale mit Substitution.
[mm] \integral_{a}^{b}{ln(cos(x)) tan(x)dx}. [/mm]

Hallo,

ich habe nun schon herumprobiert mit [mm] tan(x)=\bruch{sin(x)}{cos(x)} [/mm] und auch mit dem Wissen, dass [mm] \integral_{a}^{b}{tan(x)dx}=-ln(cos(x))+c [/mm], usw. Ich komme auf keine wirklich gute Lösung. Wahrscheinlich muss ich zweimal substituieren, aber ich weiß nicht, ob ich mich da nicht verrenne. Kann mir jemand einen Tipp geben?

Vielen Dank, Gruß, Stefan.

        
Bezug
Integral mit Substitution: Antwort
Status: (Antwort) fertig Status 
Datum: 18:19 So 28.12.2008
Autor: MathePower

Hallo stefan00,

> Seien a < b [mm]\in \IR[/mm] so gewählt, dass die folgenden
> Integrale definiert sind.
>  Bestimmen Sie die Integrale mit Substitution.
>  [mm]\integral_{a}^{b}{ln(cos(x)) tan(x)dx}.[/mm]
>  
> Hallo,
>  
> ich habe nun schon herumprobiert mit
> [mm]tan(x)=\bruch{sin(x)}{cos(x)}[/mm] und auch mit dem Wissen, dass
> [mm]\integral_{a}^{b}{tan(x)dx}=-ln(cos(x))+c [/mm], usw. Ich komme
> auf keine wirklich gute Lösung. Wahrscheinlich muss ich
> zweimal substituieren, aber ich weiß nicht, ob ich mich da
> nicht verrenne. Kann mir jemand einen Tipp geben?


Bilde mal die Ableitung von

[mm]\operatornam{ln}\left( \ \cos\left(x\right) \ \right)[/mm]


>  
> Vielen Dank, Gruß, Stefan.


Gruß
MathePower

Bezug
                
Bezug
Integral mit Substitution: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:41 So 28.12.2008
Autor: stefan00

Hallo MathePower,

> Bilde mal die Ableitung von
>  
> [mm]\operatornam{ln}\left( \ \cos\left(x\right) \ \right)[/mm]

ok, die Ableitung ist -tan(x) oder [mm] -\bruch{sin(x)}{cos(x)}, [/mm] hm, aber was muss ich nun substituieren? u=ln(cos(x))?

Sorry, ich komme noch nicht weiter.

Danke, Gruß, Stefan.

Bezug
                        
Bezug
Integral mit Substitution: Antwort
Status: (Antwort) fertig Status 
Datum: 18:47 So 28.12.2008
Autor: reverend

Ja, [mm] u=\ln{(\cos{x})} [/mm] ist gut.

Dann hast du ja [mm] \bruch{du}{dx}=-\bruch{\sin{x}}{\cos{x}} [/mm]

Umgeformt: [mm] dx=-\bruch{\cos{x}}{\sin{x}}du [/mm]

...was das Integral ja auf ein spartanisches Format hin umdekoriert.

Bezug
                                
Bezug
Integral mit Substitution: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:20 So 28.12.2008
Autor: stefan00

Hallo Reverend,
> Ja, [mm]u=\ln{(\cos{x})}[/mm] ist gut.
>  
> Dann hast du ja [mm]\bruch{du}{dx}=-\bruch{\sin{x}}{\cos{x}}[/mm]
>  
> Umgeformt: [mm]dx=-\bruch{\cos{x}}{\sin{x}}du[/mm]
>  
> ...was das Integral ja auf ein spartanisches Format hin
> umdekoriert.

ja, natürlich, dann habe ich ja [mm] -\integral_{a}^{b}{u \bruch{sin(x)}{cos(x)}\bruch{cos(x)}{sin(x)}du} [/mm] = [mm] -\integral_{a}^{b}{u du} [/mm] = [mm] -\bruch{u^2}{2}, [/mm] und das ergibt ja resubstituiert: [mm] -\bruch{1}{2}(ln(cos(x))^2. [/mm]

Danke schön, hatte wohl mächtig Tomaten auf den Augen.

Gruß, Stefan.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]