matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegralrechnungIntegral - anspruchsvoll
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Integralrechnung" - Integral - anspruchsvoll
Integral - anspruchsvoll < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integral - anspruchsvoll: anspruchsvolle Aufgaben
Status: (Frage) beantwortet Status 
Datum: 11:08 So 17.06.2007
Autor: Aeryn

Aufgabe
Berechnen Sie.
a) [mm] \integral_{1}^{4}\bruch{e^{\wurzel{x}}}{\wurzel{x}(1+e^{\wurzel{x}})} [/mm] dx

b) [mm] \integral_{0}^{1/3} \bruch{dx}{e^{x}+1} [/mm] (Hinweis: Substituieren Sie in b) [mm] t=e^{-x} [/mm]

Hi und guten Morgen,

bei a) habe ich für [mm] u=1+e^{\wurzel{x}} [/mm] angenommen oder wäre es besser für [mm] u=e^{\wurzel{x}}? [/mm]

bei b) ?


        
Bezug
Integral - anspruchsvoll: Antwort
Status: (Antwort) fertig Status 
Datum: 11:35 So 17.06.2007
Autor: schachuzipus

Hallo Aeyrn,

> Berechnen Sie.
>  a)
> [mm]\integral_{1}^{4}\bruch{e^{\wurzel{x}}}{\wurzel{x}(1+e^{\wurzel{x}})}[/mm]
> dx
>  
> b) [mm]\integral_{0}^{1/3} \bruch{dx}{e^{x}+1}[/mm] (Hinweis:
> Substituieren Sie in b) [mm]t=e^{-x}[/mm]
>  Hi und guten Morgen,
>  
> bei a) habe ich für [mm]u=1+e^{\wurzel{x}}[/mm] angenommen oder wäre
> es besser für [mm]u=e^{\wurzel{x}}?[/mm]

ja, m.E. ist [mm] $u:=e^{\sqrt{x}}$ [/mm] der  bessere Ansatz, das gibt ein ziemlich einfaches Integral

>  
> bei b) ?
>  

wende den Tipp an,

setze [mm] $u:=e^{-x}\Rightarrow e^x=\frac{1}{u}\Rightarrow x=...\Rightarrow \frac{dx}{du}=....$ [/mm]

Einfach mal starten, das kriegste schon hin

LG

schachuzipus

Bezug
                
Bezug
Integral - anspruchsvoll: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:28 So 17.06.2007
Autor: Aeryn

ad a)

[mm] u:=e^{\sqrt{x}} [/mm]

du=? wäre doch die 1. Ableitung davon?

Ich weiß, dass f(x)= [mm] e^{x} [/mm] und f'(x)= [mm] e^{x}, [/mm] ich schätze das kommt hier nicht zum einsatz?

ad b)

[mm] u:=e^{-x}\Rightarrow e^x=\frac{1}{u}\Rightarrow x=...\Rightarrow \frac{dx}{du}=.... [/mm]

x=ln [mm] \bruch{1}{u} [/mm]

dx = [mm] -\bruch{1}{u} [/mm]

stimmt es soweit?

Bezug
                        
Bezug
Integral - anspruchsvoll: Antwort
Status: (Antwort) fertig Status 
Datum: 12:41 So 17.06.2007
Autor: schachuzipus

Hallo Aeryn,

> ad a)
>
> [mm]u:=e^{\sqrt{x}}[/mm]
>  
> du=? wäre doch die 1. Ableitung davon? [kopfkratz3]
>  
> Ich weiß, dass f(x)= [mm]e^{x}[/mm] und f'(x)= [mm]e^{x},[/mm] ich schätze
> das kommt hier nicht zum einsatz?

[mm] $u=e^{\sqrt{x}}\Rightarrow \ln(u)=\sqrt{x}\Rightarrow \ln^2(u)=x\Rightarrow x'=\frac{dx}{du}=\frac{2\ln(u)}{u}\Rightarrow [/mm] dx=....$

>  
> ad b)
>  
> [mm]u:=e^{-x}\Rightarrow e^x=\frac{1}{u}\Rightarrow x=...\Rightarrow \frac{dx}{du}=....[/mm]
>
> x=ln [mm]\bruch{1}{u}[/mm] [ok] [mm] =-\ln(u) [/mm]
>  
> dx = [mm]-\bruch{1}{u}[/mm] [du musst [mm] \frac{dx}{du} [/mm] bestimmen, also dx "nach" du ableiten]

[mm] x'=\frac{dx}{\red{du}}=-\frac{1}{u}\Rightarrow [/mm] dx=.....

>  
> stimmt es soweit?

ja, fast.

Dann mal noch frohes Integrieren ;-)

cu

schachuzipus

Bezug
                                
Bezug
Integral - anspruchsvoll: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:12 So 17.06.2007
Autor: Aeryn

Hab jetzt mal fröhlich integriert! *g*

und das "geniales" ist dabei rausgekommen ;)

ad a)

[mm] u=e^{\sqrt{x}}\Rightarrow \ln(u)=\sqrt{x}\Rightarrow \ln^2(u)=x\Rightarrow x'=\frac{dx}{du}=\frac{2\ln(u)}{u}\Rightarrow [/mm] dx=....

dx = [mm] \bruch{2ln(u)}{u} [/mm] du

[mm] \integral_{1}^{4} \bruch{u}{ln(u) (1+u)} \bruch{2ln(u)}{u} [/mm] du

das kann ich ja jetzt kürzen zu:

[mm] \integral_{1}^{4} \bruch{2}{(1+u)} [/mm] du

[mm] 2*\integral_{1}^{4} \bruch{1}{(1+u)} [/mm] du = 2*ln(1+u)


ad b)

dx = [mm] -\bruch{1}{u} [/mm] du

[mm] \integral_{0}^{\bruch{1}{3}} \bruch{-\bruch{1}{u}}{\bruch{1}{u} +1} [/mm] du

Bezug
                                        
Bezug
Integral - anspruchsvoll: Antwort
Status: (Antwort) fertig Status 
Datum: 13:22 So 17.06.2007
Autor: schachuzipus

Hi,

> Hab jetzt mal fröhlich integriert! *g*
>  
> und das "geniales" ist dabei rausgekommen ;)
>  
> ad a)
>  
> [mm]u=e^{\sqrt{x}}\Rightarrow \ln(u)=\sqrt{x}\Rightarrow \ln^2(u)=x\Rightarrow x'=\frac{dx}{du}=\frac{2\ln(u)}{u}\Rightarrow[/mm]
> dx=....
>  
> dx = [mm]\bruch{2ln(u)}{u}[/mm] du
>  
> [mm]\integral_{1}^{4} \bruch{u}{ln(u) (1+u)} \bruch{2ln(u)}{u}[/mm]
> du
>  
> das kann ich ja jetzt kürzen zu:
>  
> [mm]\integral_{1}^{4} \bruch{2}{(1+u)}[/mm] du
>  
> [mm]2*\integral_{1}^{4} \bruch{1}{(1+u)}[/mm] du = 2*ln(1+u) [daumenhoch]

das sieht sehr gut aus,

du musst nur mit den Grenzen aufpassen, entweder substituiure die mit oder berechne zuerst das unbestimmte Integral, dann resubstituieren, dann alte Grenzen nehmen

>  
>
> ad b)
>  
> dx = [mm]-\bruch{1}{u}[/mm] du
>  
> [mm]\integral_{0}^{\bruch{1}{3}} \bruch{-\bruch{1}{u}}{\bruch{1}{u} +1}[/mm]
> du [ok]

Das kannst du weiter umformen. Mache mal den Nenner gleichnamig, da fällt fast alles weg...

Aber bisher gut gemacht - weiter so ;-)

LG

schachuzipus


Bezug
                                                
Bezug
Integral - anspruchsvoll: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:37 So 17.06.2007
Autor: Aeryn

zu  a)
wie bitte?

>
> du musst nur mit den Grenzen aufpassen, entweder
> substituiure die mit oder berechne zuerst das unbestimmte
> Integral, dann resubstituieren, dann alte Grenzen nehmen
>  

zu b)

[mm] \integral_{0}^{\bruch{1}{3}} \bruch{-\bruch{1}{u}}{\bruch{1}{u} +1} [/mm]

[mm] \integral_{0}^{\bruch{1}{3}} \bruch{-\bruch{1}{u}}{\bruch{1}{u} +\bruch{u}{u}} [/mm]

[mm] \integral_{0}^{\bruch{1}{3}} -\bruch{1}{u}*\bruch{u}{1+u} [/mm] = [mm] -\bruch{1}{1+u} [/mm]

Bezug
                                                        
Bezug
Integral - anspruchsvoll: Antwort
Status: (Antwort) fertig Status 
Datum: 13:46 So 17.06.2007
Autor: schachuzipus

Hmmm,

> zu  a)
> wie bitte?
>
> >
> > du musst nur mit den Grenzen aufpassen, entweder
> > substituiure die mit oder berechne zuerst das unbestimmte
> > Integral, dann resubstituieren, dann alte Grenzen nehmen

[sic!]

Wenn du substituierst, musst du natürlich auch die Grenzen substituieren und übernehmen, sobald du die neue Variable u ins Integral schreibst, musst du die Grenzen in u nehmen.
ALTERNATIV lasse alle Grenzen weg und bestimme zuerst das UNBESTIMMTE Integral (in u), Das dann wieder in x ausdrücken, also resubstituieren.
Und ganz am Schluß die (ursprünglichen) Grenzen einsetzen

> zu b)
>  
> [mm]\integral_{0}^{\bruch{1}{3}} \bruch{-\bruch{1}{u}}{\bruch{1}{u} +1}[/mm]
>  
> [mm]\integral_{0}^{\bruch{1}{3}} \bruch{-\bruch{1}{u}}{\bruch{1}{u} +\bruch{u}{u}}[/mm]
>  
> [mm]\integral_{0}^{\bruch{1}{3}} -\bruch{1}{u}*\bruch{u}{1+u}[/mm] =
> [mm]\red{-\int}{\bruch{1}{1+u}\red{du}}[/mm]  [ok]

Das nun berechnen

Gruß

schachuzipus


Bezug
                                                                
Bezug
Integral - anspruchsvoll: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:41 So 17.06.2007
Autor: Aeryn

zu a)

meinst du das so?

[mm] u=e^{\wurzel{x}} [/mm]

[mm] u=e^{\wurzel{4}} [/mm] = [mm] e^{2} [/mm]

[mm] u=e^{\wurzel{1}} [/mm] = [mm] e^{1} [/mm]

als neue Grenzen?

jedenfalls wenn ich es resubstituiere:

2*ln(1+u) = [mm] 2*ln(1+e^{\wurzel{x}}) [/mm]

in den Grenzen 1 und 4:

[mm] 2*ln(1+e^{\wurzel{4}}) [/mm] - [mm] 2*ln(1+e^{\wurzel{1}}) [/mm]

Bezug
                                                                        
Bezug
Integral - anspruchsvoll: Antwort
Status: (Antwort) fertig Status 
Datum: 14:47 So 17.06.2007
Autor: schachuzipus

Hi,

genau das meine ich,

wenn du mal das Integral nicht resubstituierst und entsprechend die Grenzen e und [mm] e^2 [/mm] einsetzt, kommst auf dasselbe Ergebnis wie, wenn du zuerst resubstituierst und die "alten" Grenzen 1 und 4 einsetzt.

Es geht v.a. um sorgfältiges Aufschreiben, du solltest, wenn du die Variablen im Integral substituierst eben auch die Integrationsgrenzen substituieren und ans Integral schreiben.

LG

schachuzipus

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]