matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegrationIntegral
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Integration" - Integral
Integral < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integral: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:50 Mo 09.09.2013
Autor: Paddi15

Aufgabe
Definiere [mm]A:={(x,y) \in \IR ^2 | x+y \leq 3, x \geq 0, y \geq 1}[/mm] und [mm]f(x,y) := (y-1)e^(^x^-^2^) ^3[/mm] (die 3 sollte eigl noch höher gestellt sein.)
 


Also mir ist klar, wie ich es ausrechnen soll und zwar:

[mm] \int_{A} {f(x,y) d(x,y)}[/mm] = [mm] \int_{0}^{2}( \int_{1}^{3-x}{{f(x,y) dy})dx[/mm][mm] \int_{0}^{2}( \int_{1}^{3-x}{{f(x,y) dy})dx[/mm] = [mm] \int_{0}^{2} e^(^x^-^2^)^3 * [ \frac{(y-1)^2}{2}]dx[/mm] (die Klammer von y= 1 bis 3-x.) 
= [mm] \int_{0}^{2} e^(^x^-^2^)^3 * \frac{1}{2}((2-x)^2 - 0 ) dx[/mm] = 
[mm] \frac{1}{6}\int_{0}^{2} e^(^x^-^2^)^3 * 3(x-e)^2 dx[/mm] (Wie komm ich hier auf dieses [mm] 3(x-e)^2 [/mm] ?)
= [mm] \frac{1}{6} [e^(^x^-^2^)^3][/mm] (von 0 bis 2) (Und wieso ist es hier plötzlich weg?)  = [mm] \frac{1}{6}(1-e^-^8)[/mm].

Vielen Dank im Voraus.
 

        
Bezug
Integral: Antwort
Status: (Antwort) fertig Status 
Datum: 17:11 Mo 09.09.2013
Autor: leduart

Hallo

> Also mir ist klar, wie ich es ausrechnen soll und zwar:
>  
> [mm]\int_{A} {f(x,y) d(x,y)}[/mm] = [mm] \int_{0}^{2}( \int_{1}^{3-x}{{f(x,y) dy})dx[/mm][mm] \int_{0}^{2}( \int_{1}^{3-x}{{f(x,y) dy})dx[/mm]
> = [mm] \int_{0}^{2} e^(^x^-^2^)^3 * [ \frac{(y-1)^2}{2}]dx[/mm] (die
> Klammer von y= 1 bis 3-x.) 
>  = [mm] \int_{0}^{2} e^(^x^-^2^)^3 * \frac{1}{2}((2-x)^2 - 0 ) dx[/mm] = 
>  
> [mm]\frac{1}{6}\int_{0}^{2} e^(^x^-^2^)^3 * 3(x-e)^2 dx[/mm] (Wie
> komm ich hier auf dieses [mm]3(x-e)^2[/mm] ?)

das muss ein Druckfehler sein statt e muss da 2 stehen!
[mm] 1/2*(x-2)^2=3*1/6*(2-x)^2 [/mm]
und den Faktor [mm] 3*(x-2)^2 [/mm] bekommst du, wenn du  [mm] e^{(x-2)^3} [/mm] ableitest. du kannst auch [mm] u=(x-2)^3 [/mm] substituieren.

>  = [mm] \frac{1}{6} [e^(^x^-^2^)^3][/mm] (von 0 bis 2) (Und wieso
> ist es hier plötzlich weg?)  = [mm] \frac{1}{6}(1-e^-^8)[/mm].

Gruss leduart

Bezug
                
Bezug
Integral: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:34 Mo 09.09.2013
Autor: Paddi15

Vielen Dank.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]