matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegrationIntegral
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Integration" - Integral
Integral < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integral: Hilfsintegral
Status: (Frage) überfällig Status 
Datum: 13:29 Sa 24.04.2010
Autor: ether

Hallo, brauche Hilfe bei der Lösung für folgendes Integral. Ein Tip oder Hilfsintegral wäre auch nicht schlecht

[mm] \integral_{0}^{2\pi}\integral_{0}^{\pi}\integral_{0}^{a} {\wurzel{\bruch{2}{a}} sin(\bruch{\pi}{a} \cdot r \cdot sin\theta \cdot cos\phi) \cdot r \cdot sin\theta \cdot cos\phi \cdot {\wurzel{\bruch{2}{a}} sin(\bruch{\pi}{a} \cdot r \cdot sin\theta \cdot cos\phi) } d\phi d\theta dr} [/mm]

beste Grüße
Ether

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt

        
Bezug
Integral: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 08:04 So 25.04.2010
Autor: Loddar

Hallo Ether,

[willkommenmr] !!


Kannst du die Aufgabenstellung überprüfen? Insbesondere: stimmt die Reihenfolge der Differentiale am Ende?


Gruß
Loddar


Bezug
        
Bezug
Integral: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:20 Mo 26.04.2010
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]