matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-AnalysisIntegral
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Uni-Analysis" - Integral
Integral < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integral: Näherung mit Trapez-Rregel
Status: (Frage) beantwortet Status 
Datum: 18:25 Mo 18.04.2005
Autor: Samoth

Hallo,

Die Aufgabe war, eine Näherungsgormel an das Integral [mm] \integral_{0}^{1} { e^{x}dx} [/mm] unter der Verwendung der Trapezregel zu finden

Die Trapezregel: [mm] \integral_{a}^{b} {f(x) dx} = \bruch{b-a}{2}(f(b) + f(a)) [/mm]

Ich hatte mir nun überlegt: Man zerlegt das Intergral in "n" gleichgroße Teilintervalle und wendet auf diese Teile die Trapezregel an.

Also: mit [mm] x_{i} = a + ih (i=0,1,....,n) [/mm] und dann [mm] h = (b-a)/n [/mm]

habe ich nun: [mm] I_{n} = \bruch{h}{2}[( f(x_{1}) + f(x_{2})) + (f(x_{2}) + f(x_{3})) + ..... + (f(x_{n-1}) + f(x_{n}))] [/mm]

also:  [mm] \bruch{h}{2} \summe_{i=0}^{n-1} (f(x_{i}) + f(x_{i+1})) [/mm]

konkret für mein Integral:

[mm] \bruch{1}{2n} \summe_{i=0}^{n-1} (e^{ x_{i}} + e^{ x_{i+1}}) [/mm]

Soweit so gut....Ich bin mir fast sicher das diese Formel so stimmt, jedoch soll ich jetzt noch zeigen, das meine Näherungsformel gegen das Integral konvergiert. Aber ich weiß jetzt gar nicht wie ich das zeigen soll.

Vielleicht kann mir hier jemand helfen.

Viele Grüße,

Samoth

        
Bezug
Integral: Antwort
Status: (Antwort) fertig Status 
Datum: 19:12 Mo 18.04.2005
Autor: Max

Hallo Samoth,


kannst du nicht die [mm] $x_i=i\cdot \frac{1}{n}$ [/mm] einsetzen und dann die [mm] $e^{x_i}=e^{\frac{i}{n}}=\left(e^{\frac{1}{n}}\right)^i$ [/mm] umschreiben um eine geometrische Reihe auszunutzen. Dann kannst du auch den Grenzwert für [mm] $n\to \infty$ [/mm] durchführen.

Gruß Max

Bezug
                
Bezug
Integral: geometrische Reihe
Status: (Frage) beantwortet Status 
Datum: 19:38 Mo 18.04.2005
Autor: Samoth

Hallo Max,

ich kann dir nicht so recht folgen, muss bei einer geometrischen Reihe

[mm] \summe_{k=0}^{n} q^{k} [/mm] nicht |q| < 1 gelten, damit sie konvergiert.

und   [mm] e^{ \bruch{1}{n}} [/mm] ist doch nicht < 1.

Oder habe ich jetzt irgendwas übersehen?

Viele Grüße,

Samoth

Bezug
                        
Bezug
Integral: Antwort
Status: (Antwort) fertig Status 
Datum: 08:21 Di 19.04.2005
Autor: Max

Hallo Samoth,

[mm] $\sum_{i=0}^n q^n [/mm] = [mm] \frac{q^{n+1}-1}{q-1}$ [/mm] gilt immer. Allerdings ist [mm] $\sum_{i=0}^{\infty} q^n =\frac{1}{1-q}$ [/mm] nur für $|q|<1$ richtig. Schreib es dir mal auf und sieh dir an, wie du den Wert der Summe möglichst vereinfachen kannst. Bei mir konnte ich dann den Grenzwert für [mm] $n\to \infty$ [/mm] bilden.

Max

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]