matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegralrechnungIntegral...
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Integralrechnung" - Integral...
Integral... < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integral...: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:14 Di 04.09.2007
Autor: Nino00

Hallo zusammen hab mal wieder ein Problem... habe leider noch nie Integralrechnung gemacht hab jetzt schon ein paar aufgaben gerechnet die aber für mich verständlich waren :-) aber bei den 3 komme ich überhaupt nicht weiter weis garnicht wie ich anfangen soll...

hoffe mir kann einer weiterhelfen... sei es ein tipp oder der nächste rechenschritt hab wirklich absolut keine ahnung :-(

1. [mm] \integral\ 2*e^x [/mm] -5/t +1

2. [mm] \integral\ [/mm] 5/3 [mm] +3z^2 [/mm]  -1/4  [mm] *z^4 [/mm]

3. [mm] \integral\ [/mm] 3*sin  -6/u  [mm] +7u^2 [/mm]


Danke schonmal

        
Bezug
Integral...: Antwort
Status: (Antwort) fertig Status 
Datum: 19:22 Di 04.09.2007
Autor: Teufel

Hi!

So augenscheinlich sehen die Aufgaben einfach aus, aber ich glaube da fehlen Klammern und sowas... Oder soll wirklich alles so hintereinander stehen?
Und meinst du bei 3.) [mm] 3sin(-\bruch{6}{u}+7u²) [/mm] oder soll das 7u² draußen sein? Oder etwas ganz anderes?

Bezug
                
Bezug
Integral...: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:16 Di 04.09.2007
Autor: Nino00

öh also ich hab keine klammern im buch angegeben...

Bezug
                        
Bezug
Integral...: Antwort
Status: (Antwort) fertig Status 
Datum: 20:30 Di 04.09.2007
Autor: Teufel

Ok!

Also:
Wenn du eine einfache Summe integrieren sollst, kannst du jeden Summanden einzeln integrieren.

x³ integriert wäre ja z.B. [mm] \bruch{1}{4}x^4, [/mm] weil [mm] \bruch{1}{4}x^4 [/mm] abgeleitet wieder x³ ist.

Allgemein: [mm] x^n [/mm] integriert wird zu [mm] \bruch{1}{n+1}x^{n+1} [/mm] für [mm] n\not=-1 [/mm]

[mm] e^x [/mm] integriert und abgeleitet ergibt immer wieder [mm] e^x. [/mm]

Die Ableitungen vom Sinus sind:
f(x)=sinx
f'(x)=cosx
f''(x)=-sinx
f'''(x)=-cosx
f''''(x)=sinx

Demnach ist sinx integriert was?


Und Brüche, bei denen die Integrationsvariable im Nenner steht , also [mm] \bruch{6}{x} [/mm] z.B., musst du die Umformung zu [mm] 6*x^{-1} [/mm] vornehmen.

[mm] x^{-1} [/mm] integriert ist ln|x| (solltest du mal deinen lehrer fragen wieso... oder jemand hier erbarmt sich :) )


Ich mach mal ein kleines Beispiel:

[mm] \integral_{}^{}{e^x-3cosx+5 dx}=e^x-3sinx+5x+c [/mm]

Das +c muss immer ran, weil das unbestimmte Integral die Menge aller Stammfunktionen zu einer Funktion ist. Eine Funktion hat also unendlich viele Stammfunktionen. Wenn du die eben erhaltene Funktion wieder ableitest, fällt das c wieder weg, egal welche Konstante da steht...

Ist vielleicht etwas wirr, aber vielleicht kannst du dir das wichtigste erstmal zusammenreimen und die Aufgaben lösen! Ansonsten frag nochmal gezielt nach! War ja nur ein kleiner Integrationscrashkurs...

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]