matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysis-SonstigesInnerer Punkt einer Folge
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Uni-Analysis-Sonstiges" - Innerer Punkt einer Folge
Innerer Punkt einer Folge < Sonstiges < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Innerer Punkt einer Folge: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:46 Do 06.11.2008
Autor: s.1988

Aufgabe
Seien a,b [mm] \in [/mm] Q mit 0<a<b. Wir definieren a1,a2,a3,... und b1,b2,b3,... rekursiv durch:
a1=a b1=b
[mm] a_{n+1}=2a_{n} b_{n} [/mm] / [mm] (a_{n} [/mm] + [mm] b_{n}) [/mm]
[mm] b_{n+1}=(a_{n} [/mm] + [mm] b_{n}) [/mm] /2

Aufgabe c) [mm] \wurzel{ab} \in I_{n} [/mm] für alle n [mm] \in [/mm] N

Hallo,
ich habe die anderen Aufgabne alle schon fertig, jetzt muss ich nur noch zeigen, dass c so ist.
Ich habe mir gedacht, dass ich das mit vollst. Induktion machen kann.
Der Fall n=1 wäre ja ziemlich einfach.
Wenn ich dann den Fall das es für n gilt vorraussetze, dann muss ich ja nur noch zeigen, dass [mm] \wurzel{ab} [/mm] im Intervall an,bn liegt.
Aber da komme ich nicht weiter, ein Tipp wäre echt klasse.
Viele Grüße

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Innerer Punkt einer Folge: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 08:57 Fr 07.11.2008
Autor: fred97

Verrätst Du uns auch, was [mm] I_n [/mm] ist ???

FRED

Bezug
        
Bezug
Innerer Punkt einer Folge: Antwort
Status: (Antwort) fertig Status 
Datum: 09:15 Fr 07.11.2008
Autor: felixf

Hallo

> Seien a,b [mm]\in[/mm] Q mit 0<a<b. Wir definieren a1,a2,a3,... und
> b1,b2,b3,... rekursiv durch:
>  a1=a b1=b
>  [mm]a_{n+1}=2a_{n} b_{n}[/mm] / [mm](a_{n}[/mm] + [mm]b_{n})[/mm]
>  [mm]b_{n+1}=(a_{n}[/mm] + [mm]b_{n})[/mm] /2
>  
> Aufgabe c) [mm]\wurzel{ab} \in I_{n}[/mm] für alle n [mm]\in[/mm] N
>  Hallo,
>  ich habe die anderen Aufgabne alle schon fertig, jetzt
> muss ich nur noch zeigen, dass c so ist.
>  Ich habe mir gedacht, dass ich das mit vollst. Induktion
> machen kann.
>  Der Fall n=1 wäre ja ziemlich einfach.
>  Wenn ich dann den Fall das es für n gilt vorraussetze,
> dann muss ich ja nur noch zeigen, dass [mm]\wurzel{ab}[/mm] im
> Intervall an,bn liegt.

Also [mm] $I_n [/mm] = [mm] [a_n, b_n]$? [/mm]

Beachte erstmal $a b = [mm] a_n b_n$ [/mm] fuer alle $n [mm] \in \IN$. [/mm] Das kannst du leicht per Induktion zeigen.

Damit reduziert sich Aufgabenteil (c) auf die Aussage, dass aus $0 < a < b$ folgt, dass [mm] $\frac{2 a b}{a + b} \le \sqrt{a b} \le \frac{a + b}{2}$ [/mm] ist.

Zur ersten Ungleichung. Wenn du mit [mm] $\frac{a + b}{2}$ [/mm] multiplizierst und durch [mm] $\sqrt{a b}$ [/mm] teilst, erhaelst du [mm] $\sqrt{a b} \le \frac{a + b}{2}$; [/mm] somit ist die erste Ungleichung aequivalent zur zweiten.

Die zweite Ungleichung, [mm] $\sqrt{a b} \le \frac{a + b}{2}$, [/mm] ist die arithmetisch-geometrische Ungleichung; in diesem Fall geht es sogar noch viel einfacher mit der 2. binomischen Formel, du musst die Ungleichung nur quadrieren und etwas umformen.

LG Felix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]