matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenMaßtheorieInhalt und Quadervereingung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Maßtheorie" - Inhalt und Quadervereingung
Inhalt und Quadervereingung < Maßtheorie < Maß/Integrat-Theorie < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Maßtheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Inhalt und Quadervereingung: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 14:59 Do 02.11.2017
Autor: Reynir

Hallo,
ich definiere: Sei F eine Figur, d.h. eine endliche Vereinigung achsenparalleler Quader mit der Eigenschaft, dass folgende paarweise disjunkte Vereinigungen für F existieren: $F= [mm] \cup_{j=1}^{m} Q_j [/mm] = [mm] \cup_{i=1}^{l} P_i$. [/mm]
Es gilt [mm] $Q_j= Q_j \cap [/mm] F = [mm] \cup_{i=1}^l Q_j \cap P_i$, [/mm] wobei die Schnitte disjunkt sind. Es gilt dann, das Volumen von [mm] $Q_j =\sum_{i=1}^l vol(Q_j\cap P_i)$. [/mm]
Man kann dann in diesem Kontext durch [mm] $\lambda(F)= \sum vol(Q_i)$ [/mm] eine additive Mengefunktion definieren. Jetzt wird in dem Beweis so verfahren, dass extra gezeigt wird, dass man den Schritt von der Vereinigung der disjunkten Schnitte zu der Summe machen darf. Das wird gemacht, indem man einen beliebigen Quader mit einer Hyperebene [mm] $x_i=c$ [/mm] schneidet und nachweist, dass sich das Quadervolumen durch die Summe der zwei resultierenden Quader ausdrücken lässt. Jetzt frage ich mich:
1. Warum ist das nötig, wenn ich durch [mm] $\lambda$ [/mm] doch eine additive Mengenfunktion habe?
2. Wieso deckt so eine Zerlegung der Quader auch die Schnitte wieder (das Vorgehen für zwei Quader wird dann iteriert)? Ich weiß, dass der Schnitt wieder ein Quader ist. Aber gibt es ein bestimmtes Vorgehen durch das die Hyperebenenschnitte genau diese Quaderschnitte liefern?
Viele Grüße
Reynir

        
Bezug
Inhalt und Quadervereingung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:57 Do 09.11.2017
Autor: Reynir

Hat sich erledigt.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Maßtheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]