matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysis-SonstigesInfimum konvexer Funktionen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Uni-Analysis-Sonstiges" - Infimum konvexer Funktionen
Infimum konvexer Funktionen < Sonstiges < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Infimum konvexer Funktionen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:20 Do 03.04.2008
Autor: kittycat

Aufgabe
Let f, [mm] f_{i} [/mm] : X [mm] \to \IR, [/mm] i [mm] \in [/mm] I be convex functions.
Is the infimum of two convex functions again convex?

Hallo liebe Mathefreunde,

Diese Aufgabe ist sicherlich nicht so schwer, aber irgendwie kann ich mit dem Infimum-Begriff nicht so viel anfangen.

Allgemein gilt ja für eine convexe Funktion:
[mm] \forall \lambda \in [/mm] [0,1] , [mm] \forall [/mm] x,y [mm] \in [/mm] X
[mm] f(\lambda [/mm] x + (1 - [mm] \lambda [/mm] )y  [mm] \le \lambda [/mm] f(x) + (1- [mm] \lambda)f(y) [/mm]

Infimum kenne ich jedoch nur als größte untere Schranke. Ist dann das infimum von zwei konvexen Funktionen, eine der beiden Funktionen?

*Ich stehe irgendwie auf dem Schlauch*
Kann mir da jemand weiterhelfen?

Liebe Grüße
kittycat



Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Infimum konvexer Funktionen: Antwort
Status: (Antwort) fertig Status 
Datum: 11:45 Do 03.04.2008
Autor: Riley

Hi Kittycat,

betrachte das Beispiel:
f(x) = 1, g(x) = x

dann gilt (inf(f,g))(x) = [mm] \begin{cases} x, & \mbox{if }x \leq 1 \\ 1, & \mbox{if } x >1 \end{cases} [/mm]

In einer Skizze sieht man eigentlich schon, dass diese Funktion nicht konvex ist, aber wenn man z.B. [mm] \lambda [/mm] = [mm] \frac{1}{2}, [/mm] x = [mm] \frac{1}{2} [/mm] und y=2 wählt, bekommt man für die Konvexeigenschaft:
h( [mm] \frac{5}{4} [/mm] ) = 1 > [mm] \frac{1}{2} h(\frac{1}{2}) [/mm] + [mm] \frac{1}{2} [/mm] h(2) = [mm] \frac{3}{4}. [/mm]

Viele Grüße,
Riley

Bezug
                
Bezug
Infimum konvexer Funktionen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:39 Do 03.04.2008
Autor: kittycat

Vielen, lieben Dank Riley!

Also zeig ich mit diesem Gegenbsp., dass das Infimum von zwei konvexen Funktionen nicht konvex ist.

Gruß
kittycat


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]