matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenInduktionsbeweiseInduktion Bi..Koeff
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Induktionsbeweise" - Induktion Bi..Koeff
Induktion Bi..Koeff < Induktion < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Induktionsbeweise"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Induktion Bi..Koeff: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:20 So 28.06.2009
Autor: huibuh

Hallo...
ich sitz hier schon den ganzen tag dran aber komm echt nich weiter. Helft mir!

Seien n,k natürliche Zahlen mit n [mm] \ge [/mm] k . Man beweise:

[mm] \vektor{n+1 \\ k+1} [/mm] = [mm] \summe_{m=k}^{n} \vektor{m \\ k} [/mm]

Ich kann ja mal meine ansätze drunter schreiben ;)  

Also Induktionsanfang n=0 ist wahr

vorraussetzung : gilt für n

schritt: n->n+1

[mm] \summe_{m=k}^{n+1} \vektor{m \\ k} [/mm] = [mm] \summe_{m=k}^{n} \vektor{m \\ k} [/mm] + [mm] \vektor{n \\ k} [/mm]
= [mm] \vektor{n \\ k} [/mm] + [mm] \vektor{n+1 \\ k} [/mm] =IV= [mm] \vektor{n+1 \\ k+1} [/mm] + [mm] \vektor{n+1 \\ k} [/mm]

[mm] =\bruch{(n+1)!}{(k+1)!(n-k)!} [/mm] + [mm] \bruch{(n+1)!}{k!(n+1-k)!} [/mm]

= [mm] \bruch{(n+1)!(n+1-k)!+(n+1)!(k+1)!(n-k)!}{(k+1)!(n-k)!k!(n+1-k)!} [/mm]

so...und jetzt hab ich so meine probleme mit dem kürzen
danke schonmal im vorraus

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


        
Bezug
Induktion Bi..Koeff: Antwort
Status: (Antwort) fertig Status 
Datum: 23:37 So 28.06.2009
Autor: pelzig


> Seien n,k natürliche Zahlen mit n [mm]\ge[/mm] k . Man beweise:
> [mm]\vektor{n+1 \\ k+1}[/mm] = [mm]\summe_{m=k}^{n} \vektor{m \\ k}[/mm]

> (...) schritt: n->n+1
> [mm]\summe_{m=k}^{n+1} \vektor{m \\ k}=\summe_{m=k}^{n} \vektor{m \\ k}+\vektor{n\red{+1} \\ k}\stackrel{\text{IV}}{=}\vektor{n+1 \\ k+1}[/mm] + [mm]\vektor{n+1 \\ k}=\bruch{(n+1)!}{(k+1)!(n-k)!}+\bruch{(n+1)!}{k!(n+1-k)!}[/mm]

>

> = [mm]\bruch{(n+1)!(n+1-k)!+(n+1)!(k+1)!(n-k)!}{(k+1)!(n-k)!k!(n+1-k)!}[/mm]

Der Hauptnenner ist [mm](k+1)!(n+1-k)![/mm], d.h. nach Erweitern und Zusammenfassen bleibt [mm] $$\frac{(n+1)!(n+1-k)+(n+1)!(k+1)}{(k+1)!(n+1-k)!}=\frac{(n+2)!}{(k+1)!(n+1-k)!}=\vektor{n+2\\k+1}$$Gruß, [/mm] Robert

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Induktionsbeweise"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]