matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-AnalysisInduktion (?)
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Uni-Analysis" - Induktion (?)
Induktion (?) < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Induktion (?): Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:25 Di 26.10.2004
Autor: DieJenny1984

Die Aufgabe:
Gegeben seien positive reelle Zahlen [mm] a_{1},...,a_{n}. [/mm] Es gelte

[mm] a_{1}*a_{2} [/mm] > 1 , [mm] a_{2}*a_{3} [/mm] > 1 ,..., [mm] a_{n-1}*a_{n} [/mm] > 1 und
[mm] a_{n}*a_{1} [/mm] > 1.

Gilt dann notwenidigerweise  [mm] \produkt_{i=1}^{n} a_{j}:=a_{1}*a_{2}*...*a_{n} [/mm] > 1? (Beweis oder Gegenbeispiel)

Hallo!
Meine Frage ist eigentlich nur, ob ich diese Aufgabe mit Induktion lösen kann. Induktionsanfang mit n=2 und dann Rest.
Gruß Jenny

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Induktion (?): Jein...
Status: (Antwort) fertig Status 
Datum: 00:17 Mi 27.10.2004
Autor: Marcel

Liebe Jenny,

> Die Aufgabe:
>  Gegeben seien positive reelle Zahlen [mm]a_{1},...,a_{n}.[/mm] Es
> gelte
>  
> [mm]a_{1}*a_{2}[/mm] > 1 , [mm]a_{2}*a_{3}[/mm] > 1 ,..., [mm]a_{n-1}*a_{n}[/mm] > 1
> und
>  [mm]a_{n}*a_{1}[/mm] > 1.

>  
> Gilt dann notwenidigerweise  [mm]\produkt_{i=1}^{n} a_{j}:=a_{1}*a_{2}*...*a_{n}[/mm]
> > 1? (Beweis oder Gegenbeispiel)

Nachdem ich zunächst die Bedingung [mm] $a_n*a_1>1$ [/mm] überlesen hatte, wollte ich dir ein Gegenbeispiel angeben. Leider ging es schief, weil in dem Gegenbeispiel eben [mm] $a_n*a_1<1$ [/mm] gegolten hätte! Gut, dass ich das noch bemerkt habe! ;-)

Es ist aber klar:
Die Aussage über das Produkt gilt notwendigerweise. Ich würde dafür zwei Fälle betrachten (beachte hierbei, dass die [mm] $a_1,...,a_n$ [/mm] alle positiv sind):

1. Fall:
Ist $n$ gerade, so gilt doch sicherlich:
[m]\produkt_{j=1}^n{a_j} =\underbrace{a_1*a_2}_{>1}*\underbrace{a_3*a_4}_{>1}*....*\underbrace{a_{n-1}*a_n}_{>1}[/m].
Und, was sagt uns das nun über das Produkt im Falle $n$ gerade?
(Du kannst natürlich auch mit $n=2$ anfangen und dann den Induktionsschritt $n [mm] \to [/mm] n+2$ durchführen; deswegen habe ich deine Frage mit Jein beantwortet. :-))

2.Fall:
Ist $n$ ungerade, so muss [mm] $a_1 \ge [/mm] 1$ oder [mm] $a_n \ge [/mm] 1$ gelten.
(Denn: Wäre [mm] $a_1<1$ [/mm] und [mm] $a_n<1$, [/mm] so wäre auch [mm] $a_n*a_1<1$ [/mm] im Widerspruch zur Voraussetzung.)
Fall 2a):
Ist [mm] $a_1 \ge [/mm] 1$ (und $n$ ungerade), so gilt:
[m]\produkt_{j=1}^n{a_j} =\underbrace{a_1}_{\ge 1}*\underbrace{a_2*a_3}_{>1}*\underbrace{a_4*a_5}_{>1}*....*\underbrace{a_{n-1}*a_n}_{>1}[/m]

Fall 2b):
Ist [mm] $a_n \ge [/mm] 1$ (und $n$ ungerade), so gilt:
[m]\produkt_{j=1}^n{a_j} =\underbrace{a_1*a_2}_{>1}*\underbrace{a_3*a_4}_{>1}*....*\underbrace{a_{n-2}*a_{n-1}}_{>1}*\underbrace{a_n}_{\ge 1}[/m]

Was erkennt man dann an dem Produkt im Falle 2a) bzw. 2b) ?

Das ganze läßt sich aber bestimmt auch per Induktion hinschreiben für diese Fälle und dann jeweils mit dem Induktionsschritt $n [mm] \to [/mm] n+2$, also könnte man deine Frage auch mit "Ja" beantworten!
Ich habe jetzt nach einem Weg gesucht, das ganze per Induktion ohne Fallunterscheidung zu machen (und dann nur mit Induktionsschritt $n [mm] \to [/mm] n+1$); bisher sehe ich nicht, wie und ob das überhaupt geht. Aber so schlimm ist es ja auch nicht, das ganze in zwei Fälle (bzw. drei, weil der zweite Fall ja wieder in zwei Fälle zerlegt wird ;-)) zu zerlegen. :-)

Liebe Grüße,
Marcel

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]