matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare AbbildungenImplikation Injektivität
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Lineare Abbildungen" - Implikation Injektivität
Implikation Injektivität < Abbildungen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Implikation Injektivität: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:35 Fr 02.11.2018
Autor: X3nion

Hallo zusammen!

Folgender Sachverhalt soll bewiesen werden:

Sei A -> B eine Abbildung.

(ii) Für jede Teilmenge M [mm] \subset [/mm] A gilt: [mm] f^{-1}(f(M)) [/mm] = M =>
(i) f ist injektiv.


Seien also [mm] f(x_{2}) [/mm] = [mm] f(x_{1}) [/mm] gegeben.
=> [mm] f(x_{2}) \in [/mm] f(A) und [mm] f(x_{1}) \in [/mm] f(A)
=> [mm] x_{2} [/mm] = [mm] x_{1} \in f^{-1}(f(A)) [/mm]
=> [mm] x_{2} [/mm] = [mm] x_{1} \in [/mm] A


Wäre das so in Ordnung?

Wie immer wäre ich für eure Antworten sehr dankbar!


Viele Grüße,
X3nion

        
Bezug
Implikation Injektivität: Antwort
Status: (Antwort) fertig Status 
Datum: 15:09 Fr 02.11.2018
Autor: luis52

Moin,

> Hallo zusammen!
>  
> Folgender Sachverhalt soll bewiesen werden:
>  
> Sei A -> B eine Abbildung.

[mm] $\red{f\colon} A\to [/mm] B$

>  
> (ii) Für jede Teilmenge M [mm]\subset[/mm] A gilt: [mm]f^{-1}(f(M))[/mm] = M
> =>
> (i) f ist injektiv.
>  
>
> Seien also [mm]f(x_{2})[/mm] = [mm]f(x_{1})[/mm] gegeben.

... und [mm] $x_1,x_2\in [/mm] A$


>  => [mm]f(x_{2}) \in[/mm] f(A) und [mm]f(x_{1}) \in[/mm] f(A)

>  => [mm]x_{2}[/mm] = [mm]x_{1} \in f^{-1}(f(A))[/mm]


Wieso ist [mm] $x_1=x_2$? [/mm] Das ist zu zeigen! Das geht *mir* zu schnell.

> => [mm]x_{2}[/mm] = [mm]x_{1} \in[/mm] A
>  
>
> Wäre das so in Ordnung?

[notok]

>  
> Wie immer wäre ich für eure Antworten sehr dankbar!
>  

Moeglicherweise geht es so: Zeige [mm] $\{x_1\}\subset\{x_2\}$ [/mm] ...



Bezug
                
Bezug
Implikation Injektivität: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:33 Fr 02.11.2018
Autor: X3nion

Hallo luis52 und vielen Dank für deine Antwort!

Hmm aber die Schritte

> Seien also $ [mm] f(x_{2}) [/mm] $ = $ [mm] f(x_{1}) [/mm] $ und $ [mm] x_1,x_2\in [/mm] A $ gegeben

>  => $ [mm] f(x_{2}) \in [/mm] $ f(A) und $ [mm] f(x_{1}) \in [/mm] $ f(A)



wären okay?

Ich komme unter Benutzung von (ii) auf $ [mm] f^{-1}(f(A)) [/mm] = A = [mm] \{x_{1}, x_{2}\} [/mm] $

Wie soll ich nun aber beide Inklusionen [mm] \{x_{1}\} \subset \{x_{2}\} [/mm] und umgekehrt zeigen?


Viele Grüße,
X3nion


Bezug
                        
Bezug
Implikation Injektivität: Antwort
Status: (Antwort) fertig Status 
Datum: 15:38 Fr 02.11.2018
Autor: luis52


> Hallo luis52 und vielen Dank für deine Antwort!
>  
> Hmm aber die Schritte
>
> > Seien also [mm]f(x_{2})[/mm] = [mm]f(x_{1})[/mm] und [mm]x_1,x_2\in A[/mm] gegeben
>  
> >  => [mm]f(x_{2}) \in[/mm] f(A) und [mm]f(x_{1}) \in[/mm] f(A)

>  
>
>
> wären okay?

Ja.

>  
> Ich komme unter Benutzung von (ii) auf [mm]f^{-1}(f(A)) = A = \{x_{1}, x_{2}\}[/mm]

Die letzte Gleichung ist nicht zwingend.

>  
> Wie soll ich nun aber beide Inklusionen [mm]\{x_{1}\} \subset \{x_{2}\}[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)



Fang mal so an: $\{x_1}\}\subset f^{-1}(f(\{x_1\})) \ldots $


> und umgekehrt zeigen?
>  

Dito.


Bezug
                                
Bezug
Implikation Injektivität: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:58 Fr 02.11.2018
Autor: X3nion

Danke nochmal für deine Antwort!

$ [mm] \{x_1\} \subset f^{-1}(f(\{x_1\})) [/mm] = [mm] f^{-1}(f(\{x_2\})) [/mm] = [mm] \{x_{2}\} [/mm]

wobei beim ersten Gleichheitszeichen die Voraussetzung [mm] f(x_{1}) [/mm] = [mm] f(x_{2}) [/mm] einhergeht?
Wäre das so korrekt?


Viele Grüße,
X3nion

Bezug
                                        
Bezug
Implikation Injektivität: Antwort
Status: (Antwort) fertig Status 
Datum: 16:36 Fr 02.11.2018
Autor: fred97


> Danke nochmal für deine Antwort!
>  
> $ [mm]\{x_1\} \subset f^{-1}(f(\{x_1\}))[/mm] = [mm]f^{-1}(f(\{x_2\}))[/mm] =
> [mm]\{x_{2}\}[/mm]
>  
> wobei beim ersten Gleichheitszeichen die Voraussetzung
> [mm]f(x_{1})[/mm] = [mm]f(x_{2})[/mm] einhergeht?

Ja


>  Wäre das so korrekt?

Ja, aber oben kannst Du schreiben:

[mm]\{x_1\}= f^{-1}(f(\{x_1\}))[/mm] = [mm]f^{-1}(f(\{x_2\}))[/mm] = [mm]\{x_{2}\}[/mm]


und fertig ist der Schuh !

>  
>
> Viele Grüße,
>  X3nion


Bezug
                                                
Bezug
Implikation Injektivität: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:00 Fr 02.11.2018
Autor: X3nion


> > Danke nochmal für deine Antwort!
>  >  
> > $ [mm]\{x_1\} \subset f^{-1}(f(\{x_1\}))[/mm] = [mm]f^{-1}(f(\{x_2\}))[/mm] =
> > [mm]\{x_{2}\}[/mm]
>  >  
> > wobei beim ersten Gleichheitszeichen die Voraussetzung
> > [mm]f(x_{1})[/mm] = [mm]f(x_{2})[/mm] einhergeht?
>  
> Ja
>  
>
> >  Wäre das so korrekt?

>  
> Ja, aber oben kannst Du schreiben:
>  
> [mm]\{x_1\}= f^{-1}(f(\{x_1\}))[/mm] = [mm]f^{-1}(f(\{x_2\}))[/mm] =
> [mm]\{x_{2}\}[/mm]
>  
>
> und fertig ist der Schuh !
>  
> >  

> >
> > Viele Grüße,
>  >  X3nion
>  


Vielen vielen Dank Fred! Ledersohle ist nun auch dran, damit ist der Schuh vollständig und die Aufgabe komplett!

Viele Grüße,
X3nion

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]