matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-NumerikImpl. Euler und Newton-Verf.
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Uni-Numerik" - Impl. Euler und Newton-Verf.
Impl. Euler und Newton-Verf. < Numerik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Numerik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Impl. Euler und Newton-Verf.: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 08:16 Di 23.12.2008
Autor: Denny22

Hallo an alle,

ich brauche dringend Hilfe bei der Berechnung eines impliziten Eulerschritts. Ich erkläre zunächst den Sachverhalt:

Betrachte n-dimensionale ODE:
   [mm] $\alpha'\,=\,6B^{-1}\left(\lambda G(\alpha)-\frac{1}{(\triangle x)^2}A\alpha\right)\,=:\,g(\alpha)$ [/mm]
wobei [mm] $\alpha',\alpha,G(\alpha)\in\IR^n$, $B,A\in\IR^{n\times n}$ [/mm] (Tridiagonalmatrizen) und [mm] $\lambda,\triangle x\in\IR$. [/mm]

Implizites Euler-Verfahren:
Äquidistante diskrete Zeitpunkte:
   [mm] $t_n\,:=\,n\cdot k\,=\,n\cdot\triangle [/mm] t$, mit [mm] $n\in\IN_0$ [/mm]
Gesucht: [mm] $\alpha_{n+1}\in\IR^n$ [/mm] mit
   [mm] $\alpha_{n+1}\,=\,\alpha_n+\triangle t\cdot g(\alpha_{n+1})$, $n\in\IN_0$ [/mm] (Implizites Eulerverfahren)
wobei [mm] $\alpha_0\in\IR^n$ [/mm] gegeben ist.
[mm] $\Longrightarrow$ [/mm] Löse n-dimensionales nichtlineares Gleichungssystem
[mm] $\Longrightarrow$ [/mm] Formuliere dieses Problem als Nullstellenaufgabe: Gesucht [mm] $\alpha\in\IR^n$ [/mm] mit
   [mm] $f(\alpha)\,:=\,\alpha-\alpha_n-\triangle t\cdot g(\alpha)\,\overset{!}{=}\,0$ [/mm]
[mm] $\Longrightarrow$ [/mm] Löse die Nullstellenaufgabe mit dem mehrdimensionalen Newton-Verfahren (dann ist [mm] $\alpha_{n+1}:=\alpha$) [/mm]
1. Frage: Stimmt mein Ansatz bis hierher?

Newton-Verfahren:
Diese Nullstellenaufgabe lässt sich äquivalent in ein Fixpunktproblem umschreiben, d.h.: Gesucht [mm] $\alpha\in\IR^n$ [/mm] mit
   [mm] $\alpha\,\overset{!}{=}\,N_f(\alpha)\,:=\,\alpha-(J(\alpha))^{-1}\cdot f(\alpha)$ [/mm]
wobei [mm] $J(\alpha)$ [/mm] die Jacobi-Matrix von $f$ bezeichnet.
Dazu berechne
   [mm] $x_{n+1}\,:=\,x_n-(J(x_n))^{-1}\cdot f(x_n)$ [/mm] (Newton-Verfahren)
2. Frage: Wie muss ich beim Newton-Verfahren [mm] $x_0$ [/mm] wählen? Ich habe doch nur [mm] $\alpha_0$ [/mm] für das implizite Euler-Verfahren gegeben. Muss ich [mm] $x_0=\alpha_0$ [/mm] setzen?
3. Frage: Genügt es zur Berechnung von [mm] $\alpha_{n+1}$ [/mm] lediglich einen Newton-Schritt zu machen?
Da die numerische Berechnung einer Inversematrix sehr aufwendig ist, lösen wir stattdessen das lineare Gleichungssystem
   [mm] $J(x_n)\cdot \triangle x_n\,=\,-f(x_n)$ [/mm]
wobei [mm] $\triangle x_n:=x_{n+1}-x_n$ [/mm] gesucht wird. Anschließend ist
   [mm] $x_{n+1}\,=\,x_n+\triangle x_n$ [/mm]
der Wert unseres 1. Iterationsschritts des Newton-Verfahrens.
4. Frage: Stimmen meine Überlegungen bis hierher?

Hauptfrage: Wie erhalten ich nun [mm] $\alpha_{n+1}$? [/mm]

Bitte bitte, helft mir noch einmal kurz vor Weihnachten.
Danke und Gruß



        
Bezug
Impl. Euler und Newton-Verf.: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 08:20 Mi 31.12.2008
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
        
Bezug
Impl. Euler und Newton-Verf.: Please help
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 08:06 Sa 03.01.2009
Autor: Denny22

Hallo,

ich suche nach wie vor eingehend nach Antworten auf meine Fragen. Hat keiner eine Ahnung?

Gruß

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Numerik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]