Identitätsmatrix Invertierbar < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 15:20 So 15.12.2013 | Autor: | Frosch20 |
Aufgabe | Seien [mm] A=(v_1,...,v_n) [/mm] und [mm] B=(w_1,...,w_n) [/mm] zwei Basen eines K-Vektorraums V.
Sei [mm] I_{V}:V\to [/mm] V die Identitätsabbildung, und seien [mm] A=M_{B}^A(I_{V}), B=M_{A}^B(I_{V}).
[/mm]
Zeigen Sie, dass [mm] A\cdot {B}=B\cdot {A}=I_n, [/mm] wobei [mm] I_n [/mm] die n [mm] \times [/mm] n Identitäsmatrix ist:
[mm] I_n=\pmat{ 1 & 0 & ... & 0 \\ 0 & 1 & ... & 0 \\ \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & ... & 1} [/mm] |
Ich komm irgendwie nicht über die Grundidee hinaus. Ich soll jetzt quasi zeigen, dass die Matrix invertierbar ist. Da die Identitätsabbildung bijektiv ist, sollte das auch gehen.
Nur ich weiss garnicht wo ich ansetzen soll ?
Kann mir vll jemand einen geringfügigen tipp geben ?
Ich komm sonst einfach nicht weiter :/
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 09:37 Mo 16.12.2013 | Autor: | fred97 |
> Seien [mm]A=(v_1,...,v_n)[/mm] und [mm]B=(w_1,...,w_n)[/mm] zwei Basen eines
> K-Vektorraums V.
> Sei [mm]I_{V}:V\to[/mm] V die Identitätsabbildung, und seien
> [mm]A=M_{B}^A(I_{V}), B=M_{A}^B(I_{V}).[/mm]
> Zeigen Sie, dass
> [mm]A\cdot {B}=B\cdot {A}=I_n,[/mm] wobei [mm]I_n[/mm] die n [mm]\times[/mm] n
> Identitäsmatrix ist:
>
> [mm]I_n=\pmat{ 1 & 0 & ... & 0 \\ 0 & 1 & ... & 0 \\ \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & ... & 1}[/mm]
>
>
>
>
> Ich komm irgendwie nicht über die Grundidee hinaus. Ich
> soll jetzt quasi zeigen, dass die Matrix invertierbar ist.
> Da die Identitätsabbildung bijektiv ist, sollte das auch
> gehen.
>
> Nur ich weiss garnicht wo ich ansetzen soll ?
>
> Kann mir vll jemand einen geringfügigen tipp geben ?
> Ich komm sonst einfach nicht weiter :/
>
$A*B= [mm] M_{B}^A(I_{V})*M_{A}^B(I_{V})=M_{B}^B(I_{V} \circ I_V)=I_n$
[/mm]
FRED
|
|
|
|