Identität für Pi < Wettbewerbe < Schule < Mathe < Vorhilfe
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 19:37 Fr 20.01.2006 | Autor: | moudi |
Aufgabe | Man zeige oder widerlege:
[mm]\lim_{n \to \infty}{\frac{1}{n}\sum_{i=1}^{n}{\sqrt{\frac{i}{n}-\frac{i^2}{n^2}}}} = \frac{\pi}{8}[/mm] |
Hallo Karl
Die Aussage ist wahr, denn bei der Summe [mm] $\sum_{i=1}^\infty\frac 1n\sqrt{\frac in-\frac{i^2}{n^2}}$ [/mm] handelt es sich um eine Riemanssche Summe für das bestimmte Integral [mm] $\int_{0}^1\sqrt{x-x^2}\,dx$.
[/mm]
In der Tat, teilt man das Intervall $[0,1]$ in n Teilintervalle der Länge [mm] $\Delta x=\frac [/mm] 1n$ auf mit den Teilungspunkten [mm] $x_i=\frac{i}{n}$, [/mm] so erhält man für die Funktion [mm] $f(x)=\sqrt{x-x^2}$ [/mm] die Riemannsche Summe [mm] $\sum_{i=1}^n f(x_i) \Delta x=\sum_{i=1}^\infty\frac 1n\sqrt{\frac in-\frac{i^2}{n^2}}$.
[/mm]
Im Limes [mm] $n\to\infty$ [/mm] erhält man daher das bestimmte Integral
[mm] $\lim_{n\to\infty}\sum_{i=1}^\infty\frac 1n\sqrt{\frac in-\frac{i^2}{n^2}}= \int_{0}^1\sqrt{x-x^2}\,dx$
[/mm]
Wir brauchen nur noch dieses Integral zu bestimmen.
[mm] $\int_{0}^1\sqrt{x-x^2}\,dx=\int_{0}^1\sqrt{\frac14-(x-\frac 12)^2}\,dx= \int_{0}^1\frac12\sqrt{1-(2x-1)^2}\,dx$
[/mm]
Führt man die Substitution $y=2x-1$, $dy=2dx$ durch, so ergibt sich
[mm] $\int_{0}^1\frac12\sqrt{1-(2x-1)^2}\,dx= \frac [/mm] 14 [mm] \underbrace{\int_{-1}^1\sqrt{1-y^2}\,dy}_{\pi/2}=\frac{\pi}{8}$.
[/mm]
Das letzte Integral ist die Fläche eines Halbkreises mit Radius 1.
mfG Moudi
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 10:35 Sa 21.01.2006 | Autor: | Karl_Pech |
Hallo Moudi!
Ich hatte schon gedacht, daß sich diese Aufgabe nicht sehr lange halten würde. (Für die stillen Mitleser des Forums war's aber hoffentlich interessant. )
Jedenfalls bin ich "beinahe den umgekehrten Weg" gegangen, um zur Summe zu kommen. Ich bin nämlich erst durch diese Diskussion auf die Idee gekommen das hier mal als Übungsaufgabe zu stellen.
In meiner Antwort dort erhalte ich im Beispiel ganz unten folgenden Term:
[mm]\frac{4}{n-1}\sum_{i=2}^{n-1}{\sqrt{1-x_i^2}}[/mm]
Da die [mm]x_i[/mm] Stützstellen äquidistanter Intervalle der Breite [mm]\frac{2}{n-1}[/mm] sind, kann man die [mm]x_i[/mm] durch diese konstante Breite ersetzen:
[mm]= \frac{4}{n-1}\sum_{i=2}^{n-1}{\sqrt{1-\left(-1 + (i-1)\frac{2}{n-1}\right)^2}}[/mm]
Das -1 unter der Wurzel in der Summe ist ja gerade die untere Intervallgrenze [mm]a[/mm]. Zu dieser Grenze addiere ich dann [mm]i-1[/mm] "Längen" der konstanten Breite hinzu. Jetzt formen wir um:
[mm]= \frac{4}{n-1}\sum_{i=1}^{n-2}{\sqrt{1-\left(-1 + \frac{2i}{n-1}\right)^2}} = \frac{4}{n-1}\sum_{i=1}^{n-2}{\sqrt{1-\left(1-\frac{4i}{n-1}+\frac{4i^2}{(n-1)^2}\right)}}[/mm]
[mm]= \frac{4}{n-1}\sum_{i=1}^{n-2}{\sqrt{\frac{4i}{n-1}-\frac{4i^2}{(n-1)^2}}} = \frac{8}{n-1}\sum_{i=1}^{n-2}{\sqrt{\frac{i}{n-1}-\frac{i^2}{(n-1)^2}}}[/mm]
So ... und an diesem Punkt wird klar, warum das Ganze bei mir eine Plausibilitätsbetrachtung ist. Ich habe mir nämlich gedacht, daß für immer größere [mm]n[/mm] es keine so großen Unterschiede mehr zwischen [mm]n-1,n-2[/mm] oder [mm]n[/mm] gibt. Mit anderen Worten:
[mm]\lim_{n\to \infty}{\frac{8}{n-1}\sum_{i=1}^{n-2}{\sqrt{\frac{i}{n-1}-\frac{i^2}{(n-1)^2}}}} = \lim_{n\to \infty}{\frac{8}{n}\sum_{i=1}^{n}{\sqrt{\frac{i}{n}-\frac{i^2}{n^2}}}}[/mm]
Aber ich merke gerade, daß ich diese Aufgabe noch etwas schwerer hätte machen können. Hier kann man ja noch weiter umformen:
[mm]\lim_{n\to \infty}{\frac{8}{n}\sum_{i=1}^{n}{\sqrt{\frac{i}{n}-\frac{i^2}{n^2}}}} = \lim_{n\to \infty}{\frac{8}{n}\sum_{i=1}^n{\sqrt{\frac{in-i^2}{n^2}}}} = \lim_{n\to \infty}{\frac{8}{n}\sum_{i=1}^{n}{\frac{\sqrt{in-i^2}}{n}}} = \pi[/mm],
was ja plausibel wäre, da ich das ja schließlich vorher approximieren wollte. (Aber durch den "etwas dubiosen" Grenzübergang, den ich oben gemacht habe, ist das dann vielleicht nicht mehr 100%ig sicher. ) Und damit:
[mm]\lim_{n\to\infty}{
\frac{1}{n^2}\sum_{i=1}^{n}{\sqrt{i(n-i)}}
} = \frac{\pi}{8}[/mm]
Viele Grüße
Karl
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 10:47 Sa 21.01.2006 | Autor: | moudi |
> Hallo Moudi!
Hallo Karl
>
>
> Ich hatte schon gedacht, daß sich diese Aufgabe nicht sehr
> lange halten würde. (Für die stillen Mitleser des
> Forums war's aber hoffentlich interessant. )
>
>
> Jedenfalls bin ich "beinahe den umgekehrten Weg" gegangen,
> um zur Summe zu kommen. Ich bin nämlich erst durch
> diese Diskussion auf
> die Idee gekommen das hier mal als Übungsaufgabe zu
> stellen.
>
>
> In meiner Antwort dort erhalte ich im Beispiel ganz unten
> folgenden Term:
>
>
> [mm]\frac{4}{n-1}\sum_{i=2}^{n-1}{\sqrt{1-x_i^2}}[/mm]
>
>
> Da die [mm]x_i[/mm] Stützstellen äquidistanter Intervalle der Breite
> [mm]\frac{2}{n-1}[/mm] sind, kann man die [mm]x_i[/mm] durch diese konstante
> Breite ersetzen:
>
>
> [mm]= \frac{4}{n-1}\sum_{i=2}^{n-1}{\sqrt{1-\left(-1 + (i-1)\frac{2}{n-1}\right)^2}}[/mm]
>
>
> Das -1 unter der Wurzel in der Summe ist ja gerade die
> untere Intervallgrenze [mm]a[/mm]. Zu dieser Grenze addiere ich dann
> [mm]i-1[/mm] "Längen" der konstanten Breite hinzu. Jetzt formen wir
> um:
>
>
> [mm]= \frac{4}{n-1}\sum_{i=1}^{n-2}{\sqrt{1-\left(-1 + \frac{2i}{n-1}\right)^2}} = \frac{4}{n-1}\sum_{i=1}^{n-2}{\sqrt{1-\left(1-\frac{4i}{n-1}+\frac{4i^2}{(n-1)^2}\right)}}[/mm]
>
> [mm]= \frac{4}{n-1}\sum_{i=1}^{n-2}{\sqrt{\frac{4i}{n-1}-\frac{4i^2}{(n-1)^2}}} = \frac{8}{n-1}\sum_{i=1}^{n-2}{\sqrt{\frac{i}{n-1}-\frac{i^2}{(n-1)^2}}}[/mm]
>
>
> So ... und an diesem Punkt wird klar, warum das Ganze bei
> mir eine Plausibilitätsbetrachtung ist. Ich habe mir
> nämlich gedacht, daß für immer größere [mm]n[/mm] es keine so großen
> Unterschiede mehr zwischen [mm]n-1,n-2[/mm] oder [mm]n[/mm] gibt. Mit anderen
> Worten:
>
>
> [mm]\lim_{n\to \infty}{\frac{8}{n-1}\sum_{i=1}^{n-2}{\sqrt{\frac{i}{n-1}-\frac{i^2}{(n-1)^2}}}} = \lim_{n\to \infty}{\frac{8}{n}\sum_{i=1}^{n}{\sqrt{\frac{i}{n}-\frac{i^2}{n^2}}}}[/mm]
Wenn du hier die Substitution $m=n-1$ durchführst, so strebt m ebenfalls gegen [mm] $\infty$ [/mm] und man erhält:
[mm]\lim_{n\to \infty}{\frac{8}{n-1}\sum_{i=1}^{n-2}{\sqrt{\frac{i}{n-1}-\frac{i^2}{(n-1)^2}}}} = \lim_{m\to \infty}{\frac{8}{m}\sum_{i=1}^{m-1}{\sqrt{\frac{i}{m}-\frac{i^2}{m^2}}}}[/mm]
und weil für $i=m$ der Summand 0 ist, kann der Summenindex bis m laufen.
>
>
> Aber ich merke gerade, daß ich diese Aufgabe noch etwas
> schwerer hätte machen können. Hier kann man ja noch
> weiter umformen:
>
>
> [mm]\lim_{n\to \infty}{\frac{8}{n}\sum_{i=1}^{n}{\sqrt{\frac{i}{n}-\frac{i^2}{n^2}}}} = \lim_{n\to \infty}{\frac{8}{n}\sum_{i=1}^n{\sqrt{\frac{in-i^2}{n^2}}}} = \lim_{n\to \infty}{\frac{8}{n}\sum_{i=1}^{n}{\frac{\sqrt{in-i^2}}{n}}} = \pi[/mm],
>
> was ja plausibel wäre, da ich das ja schließlich vorher
> approximieren wollte. (Aber durch den "etwas dubiosen"
> Grenzübergang, den ich oben gemacht habe, ist das dann
> vielleicht nicht mehr 100%ig sicher. ) Und damit:
>
>
> [mm]\lim_{n\to\infty}{
\frac{1}{n^2}\sum_{i=1}^{n}{\sqrt{i(n-i)}}
} = \frac{\pi}{8}[/mm]
Das hatte ich zuerst auch so umgeformt, und bin dann aber auf dem Holzweg gelandet.
mfG Moudi
>
>
>
> Viele Grüße
> Karl
>
>
>
>
>
|
|
|
|