matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAlgebraIdentität beweisen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Algebra" - Identität beweisen
Identität beweisen < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Identität beweisen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 00:09 Di 10.02.2015
Autor: Mopsi

Aufgabe
Beweise die folgende Identität für alle [mm]k,n \in \IN[/mm].
[mm]k * \vektor{n \\ k} = n * \vektor{n-1 \\ k-1}[/mm]
 


Hey :)

Ich habe so eine Art von Aufgabe schon lange nicht mehr gelöst und bin mir jetzt nicht ganz sicher, ob das was ich mir hier gedacht habe richtig ist und als Beweis ausreicht.

[mm]k * \vektor{n \\ k} = k* \frac{n!}{k!(n-k)!} = k* \frac{n*(n-1)!}{k*(k-1)!(n-k)!} = n \frac{(n-1)!}{(k-1)!(n-k)!} = n * \vektor{n-1 \\ k-1}[/mm]

Reicht das schon?

        
Bezug
Identität beweisen: Antwort
Status: (Antwort) fertig Status 
Datum: 01:45 Di 10.02.2015
Autor: reverend

Hallo mopsi,

> [mm]k * \vektor{n \\ k} = k* \frac{n!}{k!(n-k)!} = k* \frac{n*(n-1)!}{k*(k-1)!(n-k)!} = n \frac{(n-1)!}{(k-1)!(n-k)!} = n * \vektor{n-1 \\ k-1}[/mm]
>  
> Reicht das schon?

Ja, das reicht. Gut gemacht!

Grüße
reverend


Bezug
                
Bezug
Identität beweisen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 09:58 Di 10.02.2015
Autor: Mopsi

Vielen lieben Dank reverend :)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]