matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra SonstigesIdeal
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Lineare Algebra Sonstiges" - Ideal
Ideal < Sonstiges < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ideal: Aufgabe
Status: (Frage) überfällig Status 
Datum: 02:43 So 28.04.2013
Autor: MrPan

Aufgabe
a) Zeigen Sie, [mm] I_a=\{ra | r \in \IR \} [/mm] ist das kleinste Hauptideal, das a enthält.

b) Sei komm. R ein Ring und I, J ideale. Zeigen sie I+J ist das kleinste Ideal was I und J enthält

Hallo,

als Ansatz hab ich zur a)

Sei L das kleinste Hauptideal das a enthält so gilt 0 [mm] \in [/mm] I, a [mm] \in [/mm] I, r*a [mm] \in [/mm] I

es gilt 0*a=0 und für x,y [mm] \in [/mm] I, x+y=r*a+r'*a=(r+r')*a mit r+r' [mm] \in [/mm] R, da R ist Ring, somit ist L das kleinste Hauptideal das a enthält, [mm] L=I_a [/mm]

b) 0+0=0 [mm] \in [/mm] I+J, für i,k [mm] \in [/mm] I und j,l in J gilt [mm] i+j+l+k\overbrace{=}^{da R kommutativ}\underbrace{k+i}_{\in I}+\underbrace{j+l}_{\in J} \in [/mm] I+J
Sei r [mm] \in [/mm] R und i+j [mm] \in [/mm] I+J so gilt r*(i+j)=r*i+r*j [mm] \in [/mm] I+J
Hab ich damit aber schon gezeigt dass es das kleineste Ideal ist? Wenn ich jetzt zeigen will dass mindestens ein Element nicht drin zu sein braucht:
Sei r [mm] \in [/mm] R fest so dass, r*(i+j) [mm] \notin [/mm] I+J, demnach ist  r*i+r*j [mm] \notin [/mm] R
Wiederspruch da r*i [mm] \in [/mm] I bzw. r*j [mm] \in [/mm] J und somit in I+J enhaltnen sein muss.

Stimmt meine Argumentation so weit? In der Literatur habe ich wenig zu "kleineste" Ideale gefunden. Merci!


Mfg

        
Bezug
Ideal: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 02:48 So 28.04.2013
Autor: Marcel

Hallo,

> a) Zeigen Sie, [mm]I_a=\{ra | r \in \IR \}[/mm] ist das kleinste
> Hauptideal, das a enthält.

Du meinst [mm] $R\,$ [/mm] anstatt [mm] $\IR\,,$ [/mm] oder?

> b) Sei komm. R ein Ring und I, J ideale. Zeigen sie I+J ist
> das kleinste Ideal was I und J enthält
>  Hallo,
>  
> als Ansatz hab ich zur a)
>  
> Sei L das kleinste Hauptideal das a enthält so gilt 0 [mm]\in[/mm]
> I, a [mm]\in[/mm] I, r*a [mm]\in[/mm] I
>  
> es gilt 0*a=0 und für x,y [mm]\in[/mm] I, x+y=r*a+r'*a=(r+r')*a mit
> r+r' [mm]\in[/mm] R, da R ist Ring, somit ist L das kleinste
> Hauptideal das a enthält, [mm]L=I_a[/mm]
>  
> b) 0+0=0 [mm]\in[/mm] I+J, für i,k [mm]\in[/mm] I und j,l in J gilt
> [mm]i+j+l+k\overbrace{=}^{da R kommutativ}\underbrace{k+i}_{\in I}+\underbrace{j+l}_{\in J} \in[/mm]
> I+J
>  Sei r [mm]\in[/mm] R und i+j [mm]\in[/mm] I+J so gilt r*(i+j)=r*i+r*j [mm]\in[/mm]
> I+J
>  Hab ich damit aber schon gezeigt dass es das kleineste
> Ideal ist? Wenn ich jetzt zeigen will dass mindestens ein
> Element nicht drin zu sein braucht:
>  Sei r [mm]\in[/mm] R fest so dass, r*(i+j) [mm]\notin[/mm] I+J, demnach ist  
> r*i+r*j [mm]\notin[/mm] R
>  Wiederspruch da r*i [mm]\in[/mm] I bzw. r*j [mm]\in[/mm] J und somit in I+J
> enhaltnen sein muss.
>  
> Stimmt meine Argumentation so weit? In der Literatur habe
> ich wenig zu "kleineste" Ideale gefunden. Merci!

Das ist mir nun zu spät, für drüberzugucken, aber ich kann Dir den Begriff
ein wenig formaler erklären:
Dass [mm] $I_a\,$ [/mm] "das kleinste Hauptideal ist, dass [mm] $a\,$ [/mm] enthält" bedeutet:

    1. [mm] $I_a$ [/mm] ist ein Hauptideal mit $a [mm] \in I_a\,.$ [/mm]

    2. Ist [mm] $J\,$ [/mm] ein weiteres Hauptideal mit $a [mm] \in J\,,$ [/mm] so folgt schon [mm] $I_a \subseteq J\,.$ [/mm]

Diese beiden Dinge sind dann bei a) zu beweisen!

Übrigens: []Algebra; Mayberg, Karpfinger, 14.2.1

Du kannst die Aufgabe auch so angehen: Du definierst erstmal
[mm] $$L:=\bigcap_{\substack{J \text{ ist Ideal}\\a \in J}}J\,.$$ [/mm]
Dann ist klar - beachte, dass der Schnitt über (beliebig viele) Ideale wieder
ein Ideal ist - dass [mm] $L\,$ [/mm] ein Ideal ist mit $a [mm] \in L\,.$ [/mm] Nun beweist Du, dass [mm] $I_a$ [/mm] ein Hauptideal
ist mit $a [mm] \in I_a\,,$ [/mm] daraus folgt sofort $L [mm] \subseteq I_a\,,$ [/mm] weil ein Hauptideal ja insbesondere
ein Ideal ist. Nun beweise noch [mm] $I_a \subseteq [/mm] L$. (D.h., hier wäre dann zu zeigen, dass
für jedes IDEAL [mm] $\tilde{J}$ [/mm] mit $a [mm] \in \tilde{J}$ [/mm] schon [mm] $I_a \subseteq \tilde{J}$ [/mm] folgt.)

Gruß,
  Marcel

Bezug
        
Bezug
Ideal: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 03:20 Di 30.04.2013
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]