matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysis-InduktionIB.Binomialkoeffizient+Potenz
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Uni-Analysis-Induktion" - IB.Binomialkoeffizient+Potenz
IB.Binomialkoeffizient+Potenz < Induktion < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Induktion"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

IB.Binomialkoeffizient+Potenz: Aufgabe Beweis
Status: (Frage) beantwortet Status 
Datum: 08:50 Do 08.11.2007
Autor: CarolinchenBienchen

Aufgabe
Beweisen Sie mittels vollständiger Induktion:
[mm] \summe_{k=1}^{n} [/mm] k³ = [mm] \pmat{ n+1 \\ 2 } [/mm] ²

Hallo,
immer wieder die Induktionsbeweise. Eigentlich finde ich Induktionsbeweise schon machbar, was mich aber hier verwirrt ist das ² . Irgendwie weiß ich nicht, wie ich den Binomialkoeffizienten mit der Potenz auf lösen soll.
Induktionsanfang: [mm] \pmat{ 2 \\ 2 } [/mm] ² = 1² = 1 (stimmt das schonmal überhaupt?) und 1³ = 1

Induktionsschluss:
[mm] \summe_{k=1}^{n+1} [/mm] k³ = [mm] \summe_{k=1}^{n} [/mm] k³ + (n+1)³
= [mm] \pmat{ n+1 \\ 2 } [/mm] ² + (n+1)³
= [mm] \bruch{(n+1)!}{2!*(n-1)!} [/mm] + (n+1)³ ... ja und dann scheitere ich schon

für die "rechte" Seite komme ich bis zu  [mm] \bruch{(n+2)!}{2!*n!}² [/mm]
Danke für eure Hilfe!

        
Bezug
IB.Binomialkoeffizient+Potenz: Tipp
Status: (Antwort) fertig Status 
Datum: 09:39 Do 08.11.2007
Autor: Roadrunner

Hallo Carolinchen!


Ich glaube, Du hast das "große Quadrat" beim Einsetzen der Induktionsvoraussetzung vergessen.


Aber vielleicht funktioniert der Nachweis etwas leichter, wenn Du Dir folgende Gleichheit klar machst:

[mm] $$\vektor{n+1\\2}^2 [/mm] \ = \ [mm] \left[\bruch{(n+1)*n}{1*2}\right]^2 [/mm] \ = \ [mm] \bruch{n^2*(n+1)^2}{4}$$ [/mm]

Damit musst Du im Induktionsschritt also zeigen:
[mm] $$\summe_{k=1}^{n+1}k^3 [/mm] \ = \ [mm] \vektor{n+2\\2}^2 [/mm] \ = \ [mm] \bruch{(n+1)^2*(n+2)^2}{4}$$ [/mm]


Gruß vom
Roadrunner


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Induktion"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]