matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenStatistik (Anwendungen)Hypothesentest Frage
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Statistik (Anwendungen)" - Hypothesentest Frage
Hypothesentest Frage < Statistik (Anwend.) < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Statistik (Anwendungen)"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Hypothesentest Frage: Verständnisfrage
Status: (Frage) beantwortet Status 
Datum: 18:11 Di 17.09.2013
Autor: starki

Aufgabe
Angenommen, ich habe eine Aufgabenstellung, habe die Nullhypothese und die Gegenhypothese herausbekommen oder sie steht schon da.
Meine Stichprobe sein jetzt n.

Also [mm] H_0: [/mm] p [mm] \le p_0, H_1: [/mm] p > [mm] p_0 [/mm]

So jetzt habe ich die Nullhypothese und die Gegenhypothese.

Was genau sagt mir die Aussage P(X = k), P(X [mm] \le [/mm] k), P(X [mm] \ge [/mm] k)?

Also wenn ich richtig gedacht habe, dann sagt mir P(X = k) die Wahrscheinlichkeit, dass ich mich mit der Nullhypothese irre, oder? Oder liege ich falsch?

Das gehört leider noch zu den Dingen, die ich nicht ganz durchdrungen habe ... :-(


        
Bezug
Hypothesentest Frage: Antwort
Status: (Antwort) fertig Status 
Datum: 01:32 Mi 18.09.2013
Autor: HJKweseleit


> Angenommen, ich habe eine Aufgabenstellung, habe die
> Nullhypothese und die Gegenhypothese herausbekommen oder
> sie steht schon da.
>  Meine Stichprobe sein jetzt n.
>  
> Also [mm]H_0:[/mm] p [mm]\le p_0, H_1:[/mm] p > [mm]p_0[/mm]
>  So jetzt habe ich die Nullhypothese und die
> Gegenhypothese.
>  
> Was genau sagt mir die Aussage P(X = k), P(X [mm]\le[/mm] k), P(X
> [mm]\ge[/mm] k)?
>  
> Also wenn ich richtig gedacht habe, dann sagt mir P(X = k)
> die Wahrscheinlichkeit, dass ich mich mit der Nullhypothese
> irre, oder? Oder liege ich falsch?

Nein, diese drei Wahrscheinlichkeiten P(X = k), P(X [mm]\le[/mm] k), P(X [mm]\ge[/mm] k) haben mit den Hypothesen direkt nichts zu tun.

Beispiel:

X = Augenzahl beim Laplace-Würfel, k=4. Dann bedeuten

P(X = k)=P(X=4)=1/6 die Wahrscheinlichkeit, dass X, also die Augenzahl, =4 ist.

P(X [mm]\le[/mm] k)=P(X [mm]\le[/mm] 4)= 1/2 die Wahrscheinlichkeit, dass X, also die Augenzahl, <4 ist, also 1, 2 oder 3.

P(X [mm]\ge[/mm] k)=P(X [mm]\ge[/mm] 4)= 1/3 die Wahrscheinlichkeit, dass X, also die Augenzahl, >4 ist, also 5 oder 6.

>
> Das gehört leider noch zu den Dingen, die ich nicht ganz
> durchdrungen habe ... :-(
>  


Bezug
        
Bezug
Hypothesentest Frage: Antwort
Status: (Antwort) fertig Status 
Datum: 03:51 Mi 18.09.2013
Autor: tobit09

Hallo starki,


> Angenommen, ich habe eine Aufgabenstellung, habe die
> Nullhypothese und die Gegenhypothese herausbekommen oder
> sie steht schon da.
>  Meine Stichprobe sein jetzt n.

Was meinst du damit?

> Also [mm]H_0:[/mm] p [mm]\le p_0, H_1:[/mm] p > [mm]p_0[/mm]

Ich glaube, es wäre einfacher auf dich einzugehen, wenn du ein vollständiges Beispiel posten würdest.

Ich gehe mal davon aus, dass irgendeine mit p indizierte Familie von möglichen Verteilungen [mm] $P_p$ [/mm] gegeben ist.

Die Vorstellung dahinter ist: Wir wissen nicht, welche dieser Verteilungen die "wahre" Verteilung ist und können nur aufgrund unserer Stichprobe Mutmaßungen über die wahre Verteilung anstellen.


> Was genau sagt mir die Aussage P(X = k), P(X [mm]\le[/mm] k), P(X
> [mm]\ge[/mm] k)?

Ich vermute, dass die Zufallsvariable $X$ den beobachteten Wert der Stichprobe beschreibt.

In der von mir skizzierten statistischen Situation gibt es gar nicht "die eine" Verteilung $P$, sondern zu jedem möglichen Parameterwert p eine Verteilung [mm] $P_p$. [/mm]

[mm] $P_p(X=k)$ [/mm] hat dann folgende Bedeutung: Angenommen, $p$ ist der "wahre" Parameter. Dann werden wir mit Wahrscheinlichkeit [mm] $P_p(X=k)$ [/mm] bei der Stichprobe den Wert $k$ erhalten.


> Also wenn ich richtig gedacht habe, dann sagt mir P(X = k)
> die Wahrscheinlichkeit, dass ich mich mit der Nullhypothese
> irre, oder? Oder liege ich falsch?

Leider letzteres. Es gibt gar nicht die Wahrscheinlichkeit, sich mit der Nullhypothese zu irren! Die Vorstellung ist folgende: Es gibt einen (unbekannten) "wahren" Parameter $p$. Entsprechend ist die Nullhypothese "in Wahrheit" entweder wahr oder falsch (und nicht mit einer bestimmten Wahrscheinlichkeit wahr oder falsch).

Im Folgenden nehme ich an, dass wir uns für einen bestimmten Test entschieden haben.

Was wir dann angeben können, ist zu jedem einzelnen Parameter $p$ unter der Annahme, er sei der "wahre" Parameter, die Wahrscheinlichkeit, dass wir eine Stichprobe erhalten, für die der Test bei der Nullhypothese bleibt.

Für [mm] $p>p_0$ [/mm] ist das die Wahrscheinlichkeit, irrtümlich bei der Nullhypothese zu bleiben, wenn $p$ der wahre Parameter ist.

Für [mm] $p\le p_0$ [/mm] ist das die Wahrscheinlichkeit, richtigerweise bei der Nullhypothese zu bleiben, wenn $p$ der wahre Parameter ist.


Ich denke, gezielter kann man helfen, wenn du die ein vollständiges Beispiel postest und dazu Fragen stellst.


Viele Grüße
Tobias

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Statistik (Anwendungen)"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]