matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenStochastikHypergeometrische Verteilung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Stochastik" - Hypergeometrische Verteilung
Hypergeometrische Verteilung < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Hypergeometrische Verteilung: Parameter
Status: (Frage) beantwortet Status 
Datum: 16:57 Fr 04.09.2009
Autor: itil

Aufgabe
Stochastik:

Im Rahmen einer 100%igen Prüfungen erhält man das Ergebnis,
dass von 200 prod. Tuben nur 4 mangelhaft waren.

Berechnen Sie die Wahrschendlcihkeit, dass in einer Stichprobe
Umfang 20 Stk. mehr als 2 mangehalft produzierte Tuben enthalten sind.


Hypergeometrische Verteilung ist zu wählen, da Ziehen ohne zurücklegen = man kann eine Tube nicht 2 mal testen - also sie nciht wieder zurücklegen.

P(x=k) = [mm] \bruch{\vektor{M \\ k} * \pmat{ N- & n- \\ M & k }}{\vektor{N \\ n}} [/mm]

k = 0,1,2 (P(x>2) = 1-(P(x=0)+P(x=1)+P(x=2))
M = 4
n = 20
N = 200

macht mir dann:

P(x=0) = 0,9029
P(x=1) = 3,6119
P(x=2) = 5,4179
______________
Summe = 9,93283

1- 9,93283 = -8,93283 ?? x 100 = -893,28% ?? iwo dürfte ich was falsch haben, ich nehme an M (anzahl der Merkmalsträger in N) dürfte falsch sein.

oder? wo haperts?

danke schon mal!

        
Bezug
Hypergeometrische Verteilung: Antwort
Status: (Antwort) fertig Status 
Datum: 21:23 Fr 04.09.2009
Autor: zetamy

Hallo,

> P(x=k) = [mm]\bruch{\vektor{M \\ k} * \pmat{ N- & n- \\ M & k }}{\vektor{N \\ n}}[/mm]

Die Formel ist fehlerhaft, richtig heißt sie $P(x=k) = [mm] \frac{\pmat{M \\ k}\cdot\pmat{N-M \\ n-k}}{\vektor{N \\ n}}$ [/mm]

> k = 0,1,2 (P(x>2) = 1-(P(x=0)+P(x=1)+P(x=2))
>  M = 4
>  n = 20
>  N = 200
>  
> macht mir dann:
>  
> P(x=0) = 0,9029
>  P(x=1) = 3,6119
>  P(x=2) = 5,4179

Die Wahrscheinlichkeiten für $x=1,x=2$ können natürlich nicht stimmen. Für $x=0$ ist sie auch nicht korrekt, sondern

$P(x=0) = [mm] \frac{\pmat{4 \\ 0}\cdot\pmat{200-4 \\ 20-0}}{\vektor{200 \\ 20}} [/mm] = [mm] \frac{1\cdot\frac{196!}{20!176!}}{\frac{200!}{20!180!}} [/mm] = [mm] \frac{196!\cdot 180!\cdot 180!}{200!\cdot 176!}\approx [/mm] 0,6539$.

Soweit erstmal, Gruß,

zetamy

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]