matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenTopologie und GeometrieHyperbolische Geometrie
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Topologie und Geometrie" - Hyperbolische Geometrie
Hyperbolische Geometrie < Topologie+Geometrie < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Topologie und Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Hyperbolische Geometrie: Abstand
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 22:25 Mi 26.01.2011
Autor: jolek

Aufgabe
Es sei A,B und C Punkte der hyperbolischen Ebene [mm] H^{2}. [/mm]
Zeigen Sie an Beispielen, dass für solche Punkte im allgemeinen weder die Implikation
a) [mm] \parallel(A [/mm] − [mm] B)\parallel [/mm] = [mm] \parallel(A [/mm] − [mm] C)\parallel \Rightarrow [/mm] dh(A,B) = dh(A,C)
noch
b) dh(A,B) = dh(A,C) [mm] \Rightarrow \parallel(A [/mm] − [mm] B)\parallel [/mm] = [mm] \parallel(A [/mm] − [mm] C)\parallel [/mm]
gilt.
Stimmen aber die x1-Koordinaten der Punkte B und C ¨uberein, dann gilt sogar
c) [mm] \parallel(A [/mm] − [mm] B)\parallel [/mm] = [mm] \parallel(A [/mm] − [mm] C)\parallel \gdw [/mm] dh(A,B) = dh(A,C).



Hey Freunde der Geometrie!

Ich hab schon hin und her überlegt und mir versucht Punkte aus zu denken aber irgendwie komm ich nicht wirklich auf ein Ergebnis. Das größte Problem was ich habe ist das die Punkte ja immer noch auf [mm] H^2 [/mm] seien müssen.
Das heißt von der Form: [mm] -(x_{1})^{2}+(x_{2})^{2}+(x_{3})^{2}=-1 [/mm] !

Wäre echt schön wenn jemand ne Idee hätte?!

MfG Jolek

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.





        
Bezug
Hyperbolische Geometrie: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:12 Do 27.01.2011
Autor: jolek

Hab es alleine geschafft!

Trotzdem danke an diejenigen die sich schon Gedanken gemacht haben.

Schönen Abend noch!!

MfG Jolek

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Topologie und Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]