matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - MatrizenHouseholder-Transformation
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Lineare Algebra - Matrizen" - Householder-Transformation
Householder-Transformation < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Householder-Transformation: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 23:16 Do 24.05.2018
Autor: sancho1980

Aufgabe
Zeigen Sie, dass die Matrix U = I − 2u [mm] u^T [/mm] , wobei u ein Einheitsvektor im R n ist, folgende Eigenschaften hat:

a) [mm] U^T [/mm] = U und [mm] U^2 [/mm] = I

Hallo,

es gibt noch mehr Eigenschaften zu zeigen, aber meine Frage betrifft nur [mm] U^2 [/mm] = I.

Wenn ich das richtig sehe, dann sieht die Matrix U wie folgt aus:

[mm] \pmat{ 1-2{u_1}^2 & -2u_1u_2 & -2u_1u_3 & \cdots & -2u_1u_n \\ -2u_1u_2 & 1-2{u_2}^2 & -2u_2u_3 & \cdots & -2u_2u_n \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ -2u_1u_n & -2u_2u_n & \cdots & -2u_{n-1}u_n & 1-2{u_n}^2} [/mm]

Jetzt versuche ich, Zeile 1, Spalte eins von [mm] U^2 [/mm] zu berechnen:

(1 - [mm] 2{u_1}^2)^2 [/mm] + [mm] 2{u_1}^2{u_2}^2 [/mm] + [mm] \ldots [/mm] + [mm] 2{u_1}^2{u_n}^2 [/mm] =

1 + [mm] {u_1}^2(2{u_2}^2 [/mm] + [mm] \ldots [/mm] + [mm] 2{u_n}^2 [/mm] - 4 + [mm] 4{u_1}^2) [/mm] =

1 + [mm] 2{u_1}^4 [/mm] - [mm] 2{u_1}^2 [/mm]

Das erwartete Ergebnis für das Element ist ja ganz klar 1. Aber wieso sollte [mm] 2{u_1}^4 [/mm] - [mm] 2{u_1}^2 [/mm] = 0 gelten?

Oder liegt der Fehler woanders?

Gruß und Danke,

Martin

        
Bezug
Householder-Transformation: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:44 Mi 06.06.2018
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]