matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - Moduln und VektorräumeHomomorphismus zeigen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Lineare Algebra - Moduln und Vektorräume" - Homomorphismus zeigen
Homomorphismus zeigen < Moduln/Vektorraum < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Homomorphismus zeigen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:52 Do 14.07.2016
Autor: DerPinguinagent

Hallo liebe Community,

im Rahmen meiner Klausurvorbereitung habe ich mal wieder eine Frage an euch. Kann mir jemand zeigen, wie ich folgendes rechne:

F: V --> W

[mm] \lambda v_{1}+..+\lambda_{n}v_{n} [/mm] --> [mm] \lambda w_{1}+..+\lambda_{n}w_{n} [/mm]

z.z. [mm] F\in Hom_{k}(V,W) [/mm]

Der genaue Satz lautet: V,W K-VR, [mm] (v_{1},..., v_{n}) [/mm] Basis von V und [mm] (w_{1},..., w_{n}) [/mm] Familie in W. Dann ex. genau ein [mm] F\in Hom_{k}(V,W) [/mm] mit [mm] F(v_{1})=w_{1},..., F(v_{n})=w_{n}. [/mm]

Dies ist ja ein Existenz-und Eindeutigkeitsbeweis. Letzteres ist Klar und habe ich schon bewiesen nur bei der Existenz habe ich noch Schwierigkeiten.

Vielen Dank für euere Hilfe!

DerPinguinagent

        
Bezug
Homomorphismus zeigen: Antwort
Status: (Antwort) fertig Status 
Datum: 18:46 Do 14.07.2016
Autor: fred97

Sei v [mm] \in [/mm] V. Da $ [mm] (v_{1},..., v_{n}) [/mm] $ eine  Basis von V ist, gibt es eindeutig bestimmte  [mm] \lambda_1,..., \lambda_n \in [/mm] K mit

$v= [mm] \lambda_1 v_{1}+..+\lambda_{n}v_{n}. [/mm] $

Definiere

  $ F(v):= [mm] \lambda_1 w_{1}+..+\lambda_{n}w_{n}$ [/mm]

Zeige, dass F das Gewünschte leistet.

FRED

  

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]