matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGewöhnliche DifferentialgleichungenHomogenes DGL-System
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Gewöhnliche Differentialgleichungen" - Homogenes DGL-System
Homogenes DGL-System < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Homogenes DGL-System: Problem beim Lösen
Status: (Frage) beantwortet Status 
Datum: 16:33 Mo 26.08.2013
Autor: Monadic512

Aufgabe
Lös das homogene DGL-System:

y1' = y2
y2' = -y1 - y2

Hallo!

ich bin gerade bei diesem gleichungssystem auf ein Problem gestoßen, weil meine Lösung anscheinend nicht stimmt.

Mein Vorgehen war wie folgt:

1. Bestimmen der Eigenwerte der Matrix:

[mm] \vmat{ 0-n & 1 \\ -1 & -2-n } [/mm] = 0

(-n) * (-2-n) - (-1) * 1 = 0
n² + 2n + 1 = 0
n = 1, doppelte Vielfachheit


2. Bestimmen des Eigenvektors
da kam bei mir der Vektor [mm] \vektor{1 \\ -1}, [/mm] der Eigenvektor hatte ja doppelte Vielfachheit.


Deshalb bin ich dann auf die homogene Lösung

[mm] \vektor{y1 \\ y2} [/mm] = [mm] e^{-t} [/mm] * [mm] \vektor{1 \\ -1} [/mm] * (C1 + C2*t)

gekommen.


Beim Einsetzen in das homogene System, geht diese Lösung nur leider nicht auf.

Weiß jemand, was ich falsch gemacht habe ?


Danke im Voraus und Freundliche Grüße

Monadic512




Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Homogenes DGL-System: Antwort
Status: (Antwort) fertig Status 
Datum: 16:39 Mo 26.08.2013
Autor: Diophant

Hallo und

[willkommenmr]

> Lös das homogene DGL-System:

>

> y1' = y2
> y2' = -y1 - y2
> Hallo!

>

> ich bin gerade bei diesem gleichungssystem auf ein Problem
> gestoßen, weil meine Lösung anscheinend nicht stimmt.

>

> Mein Vorgehen war wie folgt:

>

> 1. Bestimmen der Eigenwerte der Matrix:

>

> [mm]\vmat{ 0-n & 1 \\ -1 & -2-n }[/mm] = 0

>

> (-n) * (-2-n) - (-1) * 1 = 0
> n² + 2n + 1 = 0
> n = 1, doppelte Vielfachheit

>

Hm, ich hab jetzt nicht groß gerechnet. Aber so wie du das DGL-System angegeben hast muss der Eintrag rechts unten in der Determinante für das CP doch -1-n heißen. Vielleicht liegt hier schon dein Fehler?

Gruß, Diophant

Bezug
        
Bezug
Homogenes DGL-System: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:40 Mo 26.08.2013
Autor: Monadic512

Sry da ist mir noch ein Fehler unterlaufen.

Gemeint war natürlich

y1' = y2
y2' = -y1 - 2*y2

Bezug
        
Bezug
Homogenes DGL-System: Antwort
Status: (Antwort) fertig Status 
Datum: 21:25 Mo 26.08.2013
Autor: MathePower

Hallo Monadic512,


[willkommenmr]



> Lös das homogene DGL-System:
>  
> y1' = y2
>  y2' = -y1 - y2
>  Hallo!
>  
> ich bin gerade bei diesem gleichungssystem auf ein Problem
> gestoßen, weil meine Lösung anscheinend nicht stimmt.
>  
> Mein Vorgehen war wie folgt:
>  
> 1. Bestimmen der Eigenwerte der Matrix:
>  
> [mm]\vmat{ 0-n & 1 \\ -1 & -2-n }[/mm] = 0
>  
> (-n) * (-2-n) - (-1) * 1 = 0
>  n² + 2n + 1 = 0
>  n = 1, doppelte Vielfachheit
>  
>
> 2. Bestimmen des Eigenvektors
>  da kam bei mir der Vektor [mm]\vektor{1 \\ -1},[/mm] der
> Eigenvektor hatte ja doppelte Vielfachheit.
>  
>
> Deshalb bin ich dann auf die homogene Lösung
>  
> [mm]\vektor{y1 \\ y2}[/mm] = [mm]e^{-t}[/mm] * [mm]\vektor{1 \\ -1}[/mm] * (C1 +
> C2*t)
>  
> gekommen.
>  


Das ist nicht richtig.

Eine Lösung ist doch zunächst: [mm]\vektor{y1 \\ y2} = C_{1}*e^{-t} * \vektor{1 \\ -1}[/mm]


Um eine zweite linear unabhängige Lösung zu bekommen,
macht man den Ansatz

[mm]\vec{y}=e^{-t}*\left(\vec{a}+t*\vec{b}\right)[/mm]

Einsetzen in das gegebene DGL-System liefert
Bedingungsgleichungen für [mm]\vec{a}, \ \vec{b}[/mm].


>
> Beim Einsetzen in das homogene System, geht diese Lösung
> nur leider nicht auf.
>  
> Weiß jemand, was ich falsch gemacht habe ?
>  
>
> Danke im Voraus und Freundliche Grüße
>  
> Monadic512
>  
>
>
>
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.



Gruss
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]