matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Komplexe AnalysisHolomorphie
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Uni-Komplexe Analysis" - Holomorphie
Holomorphie < komplex < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Holomorphie: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:52 So 22.05.2016
Autor: Herzblatt

Aufgabe
Es sei r>0. Die Funktionen f,g: [mm] \bar{B(0,r)} \to \IC [/mm] (ohne die 0) seien stetig auf [mm] \bar{B(0,r)} [/mm] und holomorph auf B(0,r) und es gelte |f(z)|=|g(z)| für alle z auf dem Rand von [mm] \bar{B(0,r)}. [/mm] Zeigen SIe, dass ein [mm] \alpha [/mm] existiert mit [mm] |\alpha| [/mm] = 1 und [mm] f=\alpha [/mm] g.
PS: das [mm] \bar [/mm] bezieht sich auf ganz B(0,r)

Zunächst würde ich gerne wissen, wie ich mir die Aufgabe vorstellen kann. Wenn ich das richtig verstanden habe, haben wir zwei Funktionen, die im Betrag die gleichen Funktionen sind. Ihr Definitionsbereich ist der "Ball" also praktisch Kreis mit Radius r um den Punkt 0 und der Wertebereich liegt in der komplexen Ebene (die 0 ausgeschlossen). Jetzt soll ich zeigen, dass so ein [mm] \alpha [/mm] existiert und [mm] |\alpha| [/mm] = 1 ist damit  [mm] f=\alpha [/mm] g. Wie gehe ich da vor?
Bisher habe ich mir folgendes gedacht:

|g(z)| = 1*|g(z)|
         = [mm] |\alpha| [/mm] * |g(z)|
         = [mm] |\alpha*g(z)| [/mm]

beim letzten SChritt bin ich mir allerdings nicht sicher, ob ich das darf, wenn ich in [mm] \IC [/mm] bin.

Vielen Dank schon einmal,

Euer Herzblatt


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt



        
Bezug
Holomorphie: Antwort
Status: (Antwort) fertig Status 
Datum: 18:43 So 22.05.2016
Autor: fred97


> Es sei r>0. Die Funktionen f,g: [mm]\bar{B(0,r)} \to \IC[/mm] (ohne
> die 0) seien stetig auf [mm]\bar{B(0,r)}[/mm] und holomorph auf
> B(0,r) und es gelte |f(z)|=|g(z)| für alle z auf dem Rand
> von [mm]\bar{B(0,r)}.[/mm] Zeigen SIe, dass ein [mm]\alpha[/mm] existiert mit
> [mm]|\alpha|[/mm] = 1 und [mm]f=\alpha[/mm] g.
>  PS: das [mm]\bar[/mm] bezieht sich auf ganz B(0,r)
>  Zunächst würde ich gerne wissen, wie ich mir die Aufgabe
> vorstellen kann. Wenn ich das richtig verstanden habe,
> haben wir zwei Funktionen, die im Betrag die gleichen
> Funktionen sind. Ihr Definitionsbereich ist der "Ball" also
> praktisch Kreis mit Radius r um den Punkt 0 und der
> Wertebereich liegt in der komplexen Ebene (die 0
> ausgeschlossen). Jetzt soll ich zeigen, dass so ein [mm]\alpha[/mm]
> existiert und [mm]|\alpha|[/mm] = 1 ist damit  [mm]f=\alpha[/mm] g. Wie gehe
> ich da vor?
>   Bisher habe ich mir folgendes gedacht:
>  
> |g(z)| = 1*|g(z)|
>           = [mm]|\alpha|[/mm] * |g(z)|
>           = [mm]|\alpha*g(z)|[/mm]
>  
> beim letzten SChritt bin ich mir allerdings nicht sicher,
> ob ich das darf, wenn ich in [mm]\IC[/mm] bin.

du darfst das. nur ist es völlig nutzlos.

tipp: betrachte f/g, maximumprinzip.

fred


>
> Vielen Dank schon einmal,
>
> Euer Herzblatt
>  
>
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt
>  
>  


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]