matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenReelle Analysis mehrerer VeränderlichenHinreichende Beding.  Max&Min
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Reelle Analysis mehrerer Veränderlichen" - Hinreichende Beding. Max&Min
Hinreichende Beding. Max&Min < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Hinreichende Beding. Max&Min: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:28 So 14.07.2013
Autor: zitrone

Hallo!

Ich habe zurzeit ein Problem mit der Bestimmung von Maxima und Minima von Differentialgleichungen mit mehreren Variablen.

Was ich soweit verstanden hab:

Mit der Hesse-Matrix muss bestimmt werden, ob die Funktion:
- pos. definit => Minimum
- neg. definit => Maximum
- pos. o. neg. semidefinit
- indefinit => Sattelstelle

Dies finde ich heraus, indem ich die einzelnen Determinanten bestimme.
Klar ist:
- Sind alle Det. positiv, dass pos. definit

- Sind alle Det. negativ, dann neg. definit

bei indefinit weiß ich nicht, wie die Vorzeichen sich wechseln müssten, damit ich sagen könnte, es ist indefinit...
wie erkenne ich das?

2 Frage:

Wenn ich die Vorzeichen -,+,- hab, wieso ist es neg. definit?

3 Frage:

Warum ist +,- indefinit?

4 Frage:

Bei der Funktion. f(x,y)= [mm] 2x^3 [/mm] - [mm] 3x^2 [/mm] + [mm] y^2 [/mm]

sagt der Dozent, bei der Stelle hess(0,0) sei es indefinit, da det(-6)= -6 und [mm] det\pmat{ -6 & 0 \\ 0 & 2 }=-12 [/mm]

..bei beiden negativen Werten hätte ich aber gesagt, es ist neg. definit...


Würde bzw könnte mir jemand bitte helfen..Ich blick da grad nicht durch...


LG zitrone



        
Bezug
Hinreichende Beding. Max&Min: Antwort
Status: (Antwort) fertig Status 
Datum: 12:19 So 14.07.2013
Autor: leduart

Hallo
aus wiki
Eine symmetrische bzw. hermitesche Matrix  ist genau dann positiv definit, wenn alle führenden Hauptminoren von  positiv sind. Aus der Tatsache, dass  genau dann negativ definit ist, wenn  positiv definit ist, ergibt sich:  ist genau dann negativ definit, wenn die Vorzeichen der führenden Hauptminoren alternieren, das heißt, falls alle ungeraden führenden Hauptminoren negativ und alle geraden positiv sind.
hilft das?
dein Satz
Sind alle Det. negativ, dann neg. definit  ist falsch, zudem sollte man von allen Hauptminoren und nicht von allen det. reden!
Gruss leduart

Bezug
                
Bezug
Hinreichende Beding. Max&Min: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:41 So 14.07.2013
Autor: zitrone

Hallo leduart,

vielen Dank für die Antwort.

> Hallo
>  aus wiki
>  Eine symmetrische bzw. hermitesche Matrix  ist genau dann
> positiv definit, wenn alle führenden Hauptminoren von  
> positiv sind. Aus der Tatsache, dass  genau dann negativ
> definit ist, wenn  positiv definit ist, ergibt sich:  ist
> genau dann negativ definit, wenn die Vorzeichen der
> führenden Hauptminoren alternieren, das heißt, falls alle
> ungeraden führenden Hauptminoren negativ und alle geraden
> positiv sind.
>  hilft das?
>  dein Satz
> Sind alle Det. negativ, dann neg. definit  ist falsch,
> zudem sollte man von allen Hauptminoren und nicht von allen
> det. reden!
>  Gruss leduart

Das heißt also, neg. definit ist erst die Funktion, wenn die Vorzeichen alternieren.
Und wenn ich nur negative Vorzeichen hab, kann es nur indifinit sein, da pos. und neg. definit ausgeschlossen werden können?

LG zitrone

Bezug
                        
Bezug
Hinreichende Beding. Max&Min: Antwort
Status: (Antwort) fertig Status 
Datum: 12:44 So 14.07.2013
Autor: leduart

Hallo
ja, so steht es da!

Bitte ordne deine Fragen etwas besser ein, diese hier hat doch nichts mit partiellen Dgl zu tun?
Gruss leduart

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]