matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-AnalysisHilfe, der Mittelwertsatz
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Uni-Analysis" - Hilfe, der Mittelwertsatz
Hilfe, der Mittelwertsatz < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Hilfe, der Mittelwertsatz: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:29 Di 25.05.2004
Autor: Clara

Hallöchen!
Wir nehmen in Analysis gerade den Mittelwertsatz durch und ich komme damit irgendwie ganz schlecht zurecht. Folgende Aufgabe zum Beispiel:

Mit dem Mittelwertsatz zeige man:

[mm] \bruch{(b-a)}{2} \ge \bruch{1}{1+a^{2}} [/mm] - [mm] \bruch{1}{1+b^{2}} [/mm] für alle a,b [mm] \in \IR [/mm] mit b > a [mm] \ge [/mm] 1

Wie zeige ich das mit dem Mittelwertsatz? Klar, laut Mittelwertsatz ist (b-a) =  [mm] \bruch{f(b)-f(a)}{f`(c)} [/mm] , das b-a taucht also dort auch auf, aber wie nutze ich das konkret für dieses Problem? Wäre super nett wenn ihr mir da helfen würdet,
mfg Clara

        
Bezug
Hilfe, der Mittelwertsatz: Antwort
Status: (Antwort) fertig Status 
Datum: 16:14 Di 25.05.2004
Autor: Julius

Liebe Clara!

>  Wir nehmen in Analysis gerade den Mittelwertsatz durch und
> ich komme damit irgendwie ganz schlecht zurecht. Folgende
> Aufgabe zum Beispiel:
>  
> Mit dem Mittelwertsatz zeige man:
>  
> [mm] \bruch{(b-a)}{2} \ge \bruch{1}{1+a^{2}} [/mm] -
> [mm] \bruch{1}{1+b^{2}} [/mm] für alle a,b [mm] \in \IR [/mm] mit b > a [mm] \ge [/mm] 1

Betrachte man die Funktion

$f(x) = - [mm] \frac{1}{1+x^2}$. [/mm]

Dann gilt:

$f'(x) = [mm] \frac{2x}{(1+x^2)^2}$. [/mm]

Für alle $c [mm] \in \IR$ [/mm] mit $b >c > a [mm] \ge [/mm] 1$ gilt:

[mm] $(1+c^2)^2 \ge (1+c^2) \ge c^2 \ge [/mm] c$,

also:

$f'(c) = [mm] \frac{2c}{(1+c^2)^2} [/mm] = 2 [mm] \cdot \underbrace{\frac{c}{(1+c^2)^2}}_{\le \, 1} \le [/mm] 2$.

Versuche es mal und melde dich mit einem Lösungsvorschlag oder bei nach wie vor bestehenden Problemen und bei weiteren Fragen.

Liebe Grüße
Julius

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]