matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegralrechnungHilfe bei Integralrechnung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Integralrechnung" - Hilfe bei Integralrechnung
Hilfe bei Integralrechnung < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Hilfe bei Integralrechnung: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 19:18 Di 09.02.2010
Autor: itstudentin

[mm] \integral_{a}^{b}{a(1+x)^{-a-1} dx} [/mm] = a* [mm] \bruch{(1+x)}{-a}^{-a} |_{0}^{\infty} [/mm] = [mm] -(1+x)^{-a} |_{0}^{\infty} [/mm] = 0-(-1) = 1

wobei a [mm] \in [/mm] (0, [mm] \infty) [/mm] und b=1

Ich weiss schon das Ergebnis. Aber ich verstehe nicht, wie man darauf kommt. Meine Fragen:

1) Wieso im dritten Schritt steht -a im Nenner?
2) Wie berechnet man F(b)-F(a) verstehe ich in diesem Beispiel auch nicht..

Könnte vielleicht jemand die Zwischenrechnung mit ein bisschen Erklärung machen? Ich bedanke mich im Voraus.

        
Bezug
Hilfe bei Integralrechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 19:31 Di 09.02.2010
Autor: steppenhahn

Hallo,

> [mm]\integral_{a}^{b}{a(1+x)^{-a-1} dx}[/mm] = a*
> [mm]\bruch{(1+x)}{-a}^{-a} |_{0}^{\infty}[/mm] = [mm]-(1+x)^{-a} |_{0}^{\infty}[/mm]
> = 0-(-1) = 1
>  
> wobei a [mm]\in[/mm] (0, [mm]\infty)[/mm] und b=1
>  
> Ich weiss schon das Ergebnis. Aber ich verstehe nicht, wie
> man darauf kommt. Meine Fragen:
>  
> 1) Wieso im dritten Schritt steht -a im Nenner?

Die Regel (direkt abgeleitet aus der Potenzregel fürs Ableiten) lautet:

Eine Stammfunktion von $f(x) = [mm] x^{n}$ [/mm] ist $F(x) = [mm] \frac{1}{n+1}*x^{n+1}$. [/mm] (Kannst du leicht durch Ableiten nachvollziehen)!

Bei uns ist: $f(x) = [mm] a*(1+x)^{-a-1}$. [/mm]
Nun die Regel (In diesem Fall ist $n = -a-1$ !):

$F(x) = [mm] a*\frac{1}{(-a-1)+1}*(1+x)^{(-a-1) + 1} [/mm] = [mm] a*\frac{1}{-a}*(1+x)^{-a}$. [/mm]

Okay?

>  2) Wie berechnet man F(b)-F(a) verstehe ich in diesem
> Beispiel auch nicht..

Wir wissen nun, dass

$F(x) = [mm] -(1+x)^{-a} [/mm] = [mm] \frac{-1}{(1+x)^{a}}$, [/mm] wobei a > 0.

ist.

Nun müssen wir

[mm] $F(\infty) [/mm] - F(0)$

bestimmen.
Ich denke, für a [mm] \ge [/mm] 1 ist es einsichtig, warum der Term für [mm] x\to\infty [/mm] gegen 0 geht: Der Nenner wird für x immer größer, und a beschleunigt diesen Vorgang sogar.

Dies ist aber auch für a < 1 der Fall, denn obwohl dann so etwas wie zum Beispiel [mm] \frac{-1}{\sqrt{1+x}} [/mm]

dasteht (für a = 1/2 ), kannst du dir vorstellen, dass das für x gegen unendlich der Nenner immer noch gegen unendlich geht.

Grüße,
Stefan

Bezug
                
Bezug
Hilfe bei Integralrechnung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:43 Di 09.02.2010
Autor: itstudentin

Alles klar. Vielen Dank!!!

Bezug
        
Bezug
Hilfe bei Integralrechnung: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 19:34 Di 09.02.2010
Autor: itstudentin

Danke!!! Ich habe noch eine dritte Frage: :-)
[mm] -(1+x)^{-a}|_{0}^{\infty} [/mm] =  0-(-1)=1 dies sollte dem F(b)-F(a) entsprechen.

Muss ich bei dieser Berechnung zuerst anstelle von X den Wert von b stellen und danach den Wert von a?

Aber ich kenne den Wert a nicht. Ich weiss nur, dass a [mm] \in (0,\infty) [/mm] liegt.


Bezug
                
Bezug
Hilfe bei Integralrechnung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:44 Di 09.02.2010
Autor: itstudentin

Es ist mir alles klar geworden.. Danke an alle!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]