matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - MatrizenHermitesche und unitäre Matrix
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Lineare Algebra - Matrizen" - Hermitesche und unitäre Matrix
Hermitesche und unitäre Matrix < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Hermitesche und unitäre Matrix: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:33 Mi 14.05.2008
Autor: maranai

Aufgabe
Zeigen Sie:
Ist A eine hermitesche Matrix, so ist exp(iA) unitär.

Hallo,

ich weiß, dass eine Matrix hermitesch ist, wenn [mm] $A^{-T} = A$ [/mm] gilt.
Eine Matrix ist unitär, wenn [mm] $A^{-T} = A^{-1}$ [/mm] gilt.
Ausserdem weiß ich, dass [mm] $exp(M) = \sum\limits_{n=0}^{\infty} \frac{1}{n!} M^n$ [/mm] gilt, wenn [mm] $M$ [/mm] eine Matrix ist.

Ich habe mir jetzt gedacht, wenn ich zeigen kann, dass [mm] $\overline{exp(iA)^T} * (exp(iA))^{-1} = I_{n}$ [/mm] gilt, so ist der Beweis erbracht.
(Es gilt ja, dass [mm] $A*B = I_n = B*A$ [/mm])
Leider bin ich nicht so gut im Beweisen...

Ich dachte mir, über die Summe heranzugehen, also einsetzen und schief draufgucken und hoffentlich was sehen.... aber dann habe ich mich gefragt, wie ich [mm] $\overline{exp(iA)^T}$ [/mm] auf eine Summe anwenden kann.... ???

Hoffentlich kann mir jemand mit Ideen und Ratschlägen helfen.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Hermitesche und unitäre Matrix: Antwort
Status: (Antwort) fertig Status 
Datum: 08:45 Do 15.05.2008
Autor: felixf

Hallo!

>  Ist A eine hermitesche Matrix, so ist exp(iA) unitär.
>  Hallo,
>  
> ich weiß, dass eine Matrix hermitesch ist, wenn [mm]$A^{-T} = A$[/mm]
> gilt.
> Eine Matrix ist unitär, wenn [mm]$A^{-T} = A^{-1}$[/mm] gilt.
> Ausserdem weiß ich, dass [mm]$exp(M) = \sum\limits_{n=0}^{\infty} \frac{1}{n!} M^n$[/mm]
> gilt, wenn [mm]$M$[/mm] eine Matrix ist.
>
> Ich habe mir jetzt gedacht, wenn ich zeigen kann, dass
> [mm]$\overline{exp(iA)^T} * (exp(iA))^{-1} = I_{n}$[/mm] gilt, so

Du meinst eher, wenn [mm] $\overline{\exp(iA)^T} \cdot \exp(iA) [/mm] = [mm] I_n$ [/mm] gilt.

> ist der Beweis erbracht.
> (Es gilt ja, dass [mm]$A*B = I_n = B*A$ [/mm])
>  Leider bin ich nicht
> so gut im Beweisen...
>
> Ich dachte mir, über die Summe heranzugehen, also einsetzen
> und schief draufgucken und hoffentlich was sehen.... aber
> dann habe ich mich gefragt, wie ich [mm]$\overline{exp(iA)^T}$[/mm]
> auf eine Summe anwenden kann.... ???

Nun, du weisst ja [mm] $\overline{A + B} [/mm] = [mm] \overline{A} [/mm] + [mm] \overline{B}$ [/mm] und $(A + [mm] B)^T [/mm] = [mm] A^T [/mm] + [mm] B^T$. [/mm] Also, kannst du jetzt sagen was [mm] $\overline{\sum_{n=0}^\infty \frac{1}{n!} (i A)^n}$ [/mm] ist?

Und dann brauchst du noch, dass [mm] $\exp(A) \exp(B) [/mm] = [mm] \exp(A [/mm] + B)$ ist wenn $A B = B A$ gilt.

(Alternativ kannst du auch unitaer diagonalisieren, dann folgt's direkt aus der Klassifizierung von hermitschen bzw. unitaeren Matrizen bzgl. unitaerer Diag'barkeit.)

LG Felix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]