matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenZahlentheorieHermite
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Zahlentheorie" - Hermite
Hermite < Zahlentheorie < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Hermite: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:23 So 05.12.2010
Autor: Arcesius


Hallo leute

Ich habe eine Aufgabe.. und zwar den Satz von Hermite zu beweisen. Dabei wurde der Beweis in verschiedenen Teilaufgaben unterteilt, von denen ich aber bisher nur eine lösen konnte:

i) Zeige, [mm]d \le 1+3log(B)[/mm], wobei [mm]d=r+2s[/mm] mit [mm](r,s)[/mm] die Signatur vom Zahlkörper [mm]K[/mm] und [mm]|\triangle_{K}| \le B[/mm], [mm]B \in \mathbb{R}[/mm].

Nun habe ich die zweite Teilaufgabe versucht, aber ich scheitere an ihr:

ii) Sei [mm]s \ge 1[/mm]. Zeige, [mm]\exists a \in \mathbb{Z}_{K}\backslash\lbrace 0 \rbrace[/mm] mit [mm]\mid\sigma_{i}(a)\mid < 1[/mm] falls [mm]1 \le i \le r+s-1[/mm] und [mm]\mid Re\sigma_{r+s}(a)\mid < 1[/mm], [mm]\mid Im\sigma_{1}(a)\mid < \left(\frac{2}{\pi}\right)^{s-1}\mid\triangle_{K}\mid^{\frac{1}{2}[/mm]

Ich habe jetzt einfach folgende Abbildung betrachtet:
[mm]\psi:\mathbb{Z}_{K} \to \mathbb{R}^{d}[/mm], [mm]a \mapsto (\sigma_{1}(a),...,\sigma_{r}(a),Re\sigma_{r+1}(a),Im\sigma_{r+1}(a),...,Im\sigma_{r+s}(a))[/mm]

Ich weiss, dass [mm]\psi(\mathbb{Z}_{K}[/mm][mm])[/mm] ein Gitter ist mit Determinante [mm]2^{-s}\mid\triangle_{K}\mid^{\frac{1}{2}}[/mm].
Nun sollte ich eine lebesgue-messbare, konvexe Menge [mm]E[/mm] in [mm]\mathbb{R}^{d}[/mm] finden mit [mm]\mu(E) > det(\psi(\mathbb{Z}_{K}))[/mm] und daraus was folgern..

Wie kann ich das anstellen? Wäre super, könnte jemand helfen..!

Grüsse, Amaro

        
Bezug
Hermite: Antwort
Status: (Antwort) fertig Status 
Datum: 22:31 So 05.12.2010
Autor: felixf

Moin Amaro!

> Ich habe eine Aufgabe.. und zwar den Satz von Hermite zu
> beweisen. Dabei wurde der Beweis in verschiedenen
> Teilaufgaben unterteilt, von denen ich aber bisher nur eine
> lösen konnte:
>  
> i) Zeige, [mm]d \le 1+3log(B)[/mm], wobei [mm]d=r+2s[/mm] mit [mm](r,s)[/mm] die
> Signatur vom Zahlkörper [mm]K[/mm] und [mm]|\triangle_{K}| \le B[/mm], [mm]B \in \mathbb{R}[/mm].

Hier ist $B$ einfach irgendeine reelle Zahl mit [mm] $|\Delta_K| \le [/mm] B$?

> Nun habe ich die zweite Teilaufgabe versucht, aber ich
> scheitere an ihr:
>  
> ii) Sei [mm]s \ge 1[/mm]. Zeige, [mm]\exists a \in \mathbb{Z}_{K}\backslash\lbrace 0 \rbrace[/mm]
> mit [mm]\mid\sigma_{i}(a)\mid < 1[/mm] falls [mm]1 \le i \le r+s-1[/mm] und
> [mm]\mid Re\sigma_{r+s}(a)\mid < 1[/mm], [mm]\mid Im\sigma_{1}(a)\mid < \left(\frac{2}{\pi}\right)^{s-1}\mid\triangle_{K}\mid^{\frac{1}{2}[/mm]
>  
> Ich habe jetzt einfach folgende Abbildung betrachtet:
>  [mm]\psi:\mathbb{Z}_{K} \to \mathbb{R}^{d}[/mm], [mm]a \mapsto (\sigma_{1}(a),...,\sigma_{r}(a),Re\sigma_{r+1}(a),Im\sigma_{r+1}(a),...,Im\sigma_{r+s}(a))[/mm]
>  
> Ich weiss, dass [mm]\psi(\mathbb{Z}_{K}[/mm][mm])[/mm] ein Gitter ist mit
> Determinante [mm]2^{-s}\mid\triangle_{K}\mid^{\frac{1}{2}}[/mm].

[ok]

>  Nun sollte ich eine lebesgue-messbare, konvexe Menge [mm]E[/mm] in
> [mm]\mathbb{R}^{d}[/mm] finden mit [mm]\mu(E) > det(\psi(\mathbb{Z}_{K}))[/mm]
> und daraus was folgern..

Genauer gesagt: [mm] $\mu(E) [/mm] > [mm] 2^d \det(\psi(\IZ_K))$! [/mm]

> Wie kann ich das anstellen? Wäre super, könnte jemand
> helfen..!

Also: das "folgern" bezieht sich auf den []Minkowskischen Gitterpunktsatz. Wenn [mm] $\mu(E)$ [/mm] gross genug ist, enthaelt es einen nicht-trivialen Punkt -- welcher genau deinem $a$ entsprechen soll.

Also. Die Abbildung [mm] $\psi$ [/mm] ist ja injektiv. Jetzt hast du ein paar Bedingungen, die $a$ erfuellen soll. Definiere die Menge $E$ so, dass [mm] $\psi(a) \in [/mm] E$ liegt, wenn $a$ die Bedingungen erfuellt.

Etwa: $E = [mm] \{ (a_1, \dots, a_d) \in \IR^d \mid |a_1| < 1, \dots, |a_r| < 1, a_{r+1}^2 + a_{r+2}^2 < 1, \dots, a_{r+2s-3}^2 + a_{r+2s-2}^2 < 1, |a_{r+2s-1}| < 1, |a_{r+2s}| < (2/\pi)^{s-1} |\Delta_K|^{1/2} \}$. [/mm]

Warum ist $E$ Lebesgue-messbar? (Das ist einfach.)

Was ist das Volumen von $E$?

Was ist [mm] $2^d \det(\psi(\IZ_K))$? [/mm]

LG Felix


Bezug
                
Bezug
Hermite: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:22 Mo 06.12.2010
Autor: Arcesius


Hallo Felix!

> Moin Amaro!
>  
> > Ich habe eine Aufgabe.. und zwar den Satz von Hermite zu
> > beweisen. Dabei wurde der Beweis in verschiedenen
> > Teilaufgaben unterteilt, von denen ich aber bisher nur eine
> > lösen konnte:
>  >  
> > i) Zeige, [mm]d \le 1+3log(B)[/mm], wobei [mm]d=r+2s[/mm] mit [mm](r,s)[/mm] die
> > Signatur vom Zahlkörper [mm]K[/mm] und [mm]|\triangle_{K}| \le B[/mm], [mm]B \in \mathbb{R}[/mm].
>
> Hier ist [mm]B[/mm] einfach irgendeine reelle Zahl mit [mm]|\Delta_K| \le B[/mm]?

Ja, genau.

>  
> > Nun habe ich die zweite Teilaufgabe versucht, aber ich
> > scheitere an ihr:
>  >  
> > ii) Sei [mm]s \ge 1[/mm]. Zeige, [mm]\exists a \in \mathbb{Z}_{K}\backslash\lbrace 0 \rbrace[/mm]
> > mit [mm]\mid\sigma_{i}(a)\mid < 1[/mm] falls [mm]1 \le i \le r+s-1[/mm] und
> > [mm]\mid Re\sigma_{r+s}(a)\mid < 1[/mm], [mm]\mid Im\sigma_{1}(a)\mid < \left(\frac{2}{\pi}\right)^{s-1}\mid\triangle_{K}\mid^{\frac{1}{2}[/mm]
>  
> >  

> > Ich habe jetzt einfach folgende Abbildung betrachtet:
>  >  [mm]\psi:\mathbb{Z}_{K} \to \mathbb{R}^{d}[/mm], [mm]a \mapsto (\sigma_{1}(a),...,\sigma_{r}(a),Re\sigma_{r+1}(a),Im\sigma_{r+1}(a),...,Im\sigma_{r+s}(a))[/mm]
>  
> >  

> > Ich weiss, dass [mm]\psi(\mathbb{Z}_{K}[/mm][mm])[/mm] ein Gitter ist mit
> > Determinante [mm]2^{-s}\mid\triangle_{K}\mid^{\frac{1}{2}}[/mm].
>  
> [ok]
>  
> >  Nun sollte ich eine lebesgue-messbare, konvexe Menge [mm]E[/mm] in

> > [mm]\mathbb{R}^{d}[/mm] finden mit [mm]\mu(E) > det(\psi(\mathbb{Z}_{K}))[/mm]
> > und daraus was folgern..
>
> Genauer gesagt: [mm]\mu(E) > 2^d \det(\psi(\IZ_K))[/mm]!

Ja, genau.. den Faktor vergessen :)

>  
> > Wie kann ich das anstellen? Wäre super, könnte jemand
> > helfen..!
>  
> Also: das "folgern" bezieht sich auf den
> []Minkowskischen Gitterpunktsatz.
> Wenn [mm]\mu(E)[/mm] gross genug ist, enthaelt es einen
> nicht-trivialen Punkt -- welcher genau deinem [mm]a[/mm] entsprechen
> soll.
>  
> Also. Die Abbildung [mm]\psi[/mm] ist ja injektiv. Jetzt hast du ein
> paar Bedingungen, die [mm]a[/mm] erfuellen soll. Definiere die Menge
> [mm]E[/mm] so, dass [mm]\psi(a) \in E[/mm] liegt, wenn [mm]a[/mm] die Bedingungen
> erfuellt.
>  
> Etwa: [mm]E = \{ (a_1, \dots, a_d) \in \IR^d \mid |a_1| < 1, \dots, |a_r| < 1, a_{r+1}^2 + a_{r+2}^2 < 1, \dots, a_{r+2s-3}^2 + a_{r+2s-2}^2 < 1, |a_{r+2s-1}| < 1, |a_{r+2s}| < (2/\pi)^{s-1} |\Delta_K|^{1/2} \}[/mm].
>  
> Warum ist [mm]E[/mm] Lebesgue-messbar? (Das ist einfach.)

Na, [mm]E \subset \mathbb{R}^{d}[/mm] offene Menge..

>  
> Was ist das Volumen von [mm]E[/mm]?

Da hab ich [mm]\mu(E) = 2^{r+1}\cdot\pi^{s-1}\cdot\left(\frac{2}{\pi}\right)^{s-1}\mid\triangle_{K}\mid^{\frac{1}{2}} = 2^{r+1}2^{s}\mid\triangle_{K}\mid^{\frac{1}{2}}[/mm]

Kann das stimmen?

>  
> Was ist [mm]2^d \det(\psi(\IZ_K))[/mm]?

>
Das ist [mm]2^{d}2^{-s}\mid\triangle_{K}\mid^{\frac{1}{2}}[/mm]


Somit gilt [mm]\mu(E) > 2^{d}det(\psi(\mathbb{Z}_{K}))[/mm] und es gibt ein solches [mm]a \in \mathbb{Z}_{K}\backslash\lbrace 0 \rbrace[/mm] wie verlangt.
(Falls ich das zeugs richtig ausgerechnet habe...)

> LG Felix
>

  
Grüsse, Amaro

Bezug
                        
Bezug
Hermite: Antwort
Status: (Antwort) fertig Status 
Datum: 17:59 Mo 06.12.2010
Autor: felixf

Moin Amaro!

> > Etwa: [mm]E = \{ (a_1, \dots, a_d) \in \IR^d \mid |a_1| < 1, \dots, |a_r| < 1, a_{r+1}^2 + a_{r+2}^2 < 1, \dots, a_{r+2s-3}^2 + a_{r+2s-2}^2 < 1, |a_{r+2s-1}| < 1, |a_{r+2s}| < (2/\pi)^{s-1} |\Delta_K|^{1/2} \}[/mm].
>  
> >  

> > Warum ist [mm]E[/mm] Lebesgue-messbar? (Das ist einfach.)
>  
> Na, [mm]E \subset \mathbb{R}^{d}[/mm] offene Menge..

Exakt ;-)

> > Was ist das Volumen von [mm]E[/mm]?
>  
> Da hab ich [mm]\mu(E) = 2^{r+1}\cdot\pi^{s-1}\cdot\left(\frac{2}{\pi}\right)^{s-1}\mid\triangle_{K}\mid^{\frac{1}{2}} = 2^{r+1}2^{s}\mid\triangle_{K}\mid^{\frac{1}{2}}[/mm]
>  
> Kann das stimmen?

Vorsicht, aus [mm] $(2/\pi)^{s-1}$ [/mm] hast du [mm] $2^s \pi^{1-s}$ [/mm] gemacht. Es muesste [mm] $2^{r+s} |\Delta_K|^{1/2}$ [/mm] uebrigbleiben.

Dafuer hast du noch einen Faktor von 2 vergessen (womit dein Ergebnis wieder stimmt): fuer [mm] $|a_{r+2s}| [/mm] < [mm] (2/\pi)^{s-1} |\Delta_K|^{1/2}$ [/mm] musst du die Grenze mit 2 multiplizieren.

> > Was ist [mm]2^d \det(\psi(\IZ_K))[/mm]?
>  >
>  Das ist [mm]2^{d}2^{-s}\mid\triangle_{K}\mid^{\frac{1}{2}}[/mm]

Und $d = r + 2 s$, womit das [mm] $2^{r + s} |\Delta_K|^{1/2}$ [/mm] ist.

> Somit gilt [mm]\mu(E) > 2^{d}det(\psi(\mathbb{Z}_{K}))[/mm] und es
> gibt ein solches [mm]a \in \mathbb{Z}_{K}\backslash\lbrace 0 \rbrace[/mm]
> wie verlangt.
>  (Falls ich das zeugs richtig ausgerechnet habe...)

Mit der zusaetzlichen 2 oben passt es, ja.

LG Felix


Bezug
                                
Bezug
Hermite: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:06 Mo 06.12.2010
Autor: Arcesius

Hallo


> > > Was ist das Volumen von [mm]E[/mm]?
>  >  
> > Da hab ich [mm]\mu(E) = 2^{r+1}\cdot\pi^{s-1}\cdot\left(\frac{2}{\pi}\right)^{s-1}\mid\triangle_{K}\mid^{\frac{1}{2}} = 2^{r+1}2^{s}\mid\triangle_{K}\mid^{\frac{1}{2}}[/mm]
>  
> >  

> > Kann das stimmen?
>  
> Vorsicht, aus [mm](2/\pi)^{s-1}[/mm] hast du [mm]2^s \pi^{1-s}[/mm] gemacht.
> Es muesste [mm]2^{r+s} |\Delta_K|^{1/2}[/mm] uebrigbleiben.
>  
> Dafuer hast du noch einen Faktor von 2 vergessen (womit
> dein Ergebnis wieder stimmt): fuer [mm]|a_{r+2s}| < (2/\pi)^{s-1} |\Delta_K|^{1/2}[/mm]
> musst du die Grenze mit 2 multiplizieren.

Ja genau.. ich hab da den Faktor nicht abgeschrieben.. aber ich hatte es aufm Blatt :) Dann passts ja!


Vielen Dank für die Hilfe.. evtl. komme ich nochmals für weitere Teilaufgaben auf diesen Thread zurück :)

Grüsse, Amaro

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]