Herleitung Bedingung Attraktor < Sonstiges < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 17:32 Mi 07.03.2007 | Autor: | Moham |
Aufgabe | Beweise, p sei ein Attraktor wenn gilt:
f(p)=p
|f'(p)| < 1
(Ein solcher Attraktor ist ein einfacher aus einem Fixpunkt bestehender Attraktor. Er tritt zum beispiel bei der logistischen Abbildung für s < 3 auf, wenn man iteriert) |
So der Beweis sieht wie folgt aus. Im groben und ganzen ist mir der Ansatz usw komplett klar. Jedoch macht mir das ominöse "A", welches immer wieder auftaucht kopfzerbrechen. Ich komm einfach nicht dahinter, wofür dies stehen soll. Die Quelle, woraus ich die Herleitung habe, erläutert bzw. erwähnt das "A" nie. Dennoch spielt es eine wesentliche Rolle. Vielleicht hat er eine Bedeutung, die ich einfach verschlafen habe als ich Differentialrechnung in der Schule hatte... Hilfe wäre super.
Wegen der Stetigkeit von f’(x) gibt es für alle x in einem hinreichend kleinen Intervall U = ]p- [mm] \varepsilon, [/mm] p+ [mm] \varepsilon[ [/mm] ein A < 1 mit |f’(x)| < A. Mit f(p) = p und x [mm] \in [/mm] U ergibt sich |f(x)-p| = |f(x)-f(p)|.
Nach Anwendung des Mittelwertsatzes* ergibt sich daraus folgende Gleichung:
|f(x)-f(p)| = |f’(c)| · |x-p|
Dabei ist c eine Stelle zwischen x und p. Also gilt f’(c) < A < 1.
Insgesamt folgt daraus: |f(x)-p| = |f(x)-f(p)| < A |x-p| < A · [mm] \varepsilon [/mm] < [mm] \varepsilon.
[/mm]
Wegen |f(x)-p|< [mm] \varepsilon [/mm] gilt f(x) [mm] \in [/mm] U und wegen |f(x)-p|<|x-p| liegt f(x) sogar näher an p als x.
Bei den weiteren Iterationen ergibt sich [mm] |f^{n} [/mm] (x)-p| < [mm] A^{n} [/mm] |x-p|. Daraus folgt wegen A < 1 die Existenz des angegebenen Grenzwertes.
Es geht wie gesagt nur um die Rolle / Bedeutung vom A!
MfG!
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 01:43 Do 08.03.2007 | Autor: | leduart |
Hallo
f'<1 damit kann man schlecht hantieren. Deshalb nimmt man ne Zahl [mm] A=1-\varepsilon [/mm] die echt kleiner 1 ist, [mm] (Ziel:A^n [/mm] gegen 0) und schreibt statt f'<1 lieber f'<A<1. also nur ne Praezisierung von f'<1.
Jeder andere name als A tuts natuerlich auch.
War das die Frage?
Gruss leduart
|
|
|
|