matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGruppe, Ring, KörperHauptideal
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Gruppe, Ring, Körper" - Hauptideal
Hauptideal < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Hauptideal: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:50 Sa 12.02.2011
Autor: m0ppel

Aufgabe
Ist [mm](x,2)[/mm] Hauptideal in [mm]\IZ_{5}[x][/mm]?

Ich bereite mich gerade auf meine Klausur vor und habe bei diesem Thema noch Probleme.

Hauptideal := [mm]alpha[/mm] ist Ideal und [mm]alpha[/mm] wird durch ein Element erzeugt.
Weiter weiß ich, dass 2 in [mm]\IZ_{5}[/mm] ein multiplikatives Inverse besitzt. Daher ist 2 Einheit in  [mm]\IZ_{5}[/mm] und daher auch in [mm]\IZ_{5}[x][/mm]. Daher ist [mm](x,2) = \IZ_{5}[x][/mm].
Kann ich hieraus schon folgern, dass [mm](x,2)[/mm] ein Hauptideal ist?
Bei mir im Skript steht weiter, dass gilt [mm](x,2) = (1)[/mm] und daher Hauptideal.
Warum gilt [mm](x,2) = (1)[/mm] dies??

Danke schon mal für die Hilfe.



        
Bezug
Hauptideal: Antwort
Status: (Antwort) fertig Status 
Datum: 01:23 So 13.02.2011
Autor: Lippel

Hallo,

> Ist [mm](x,2)[/mm] Hauptideal in [mm]\IZ_{5}[x][/mm]?
>  Ich bereite mich gerade auf meine Klausur vor und habe bei
> diesem Thema noch Probleme.
>  
> Hauptideal := [mm]alpha[/mm] ist Ideal und [mm]alpha[/mm] wird durch ein
> Element erzeugt.
>  Weiter weiß ich, dass 2 in [mm]\IZ_{5}[/mm] ein multiplikatives
> Inverse besitzt. Daher ist 2 Einheit in  [mm]\IZ_{5}[/mm] und daher
> auch in [mm]\IZ_{5}[x][/mm]. Daher ist [mm](x,2) = \IZ_{5}[x][/mm].
> Kann ich hieraus schon folgern, dass [mm](x,2)[/mm] ein Hauptideal
> ist?

Ja, denn [mm] $\IZ_{5}[X]$ [/mm] wird z.B. durch das Einselement erzeugt, [mm] $(1)=\IZ_{5}[X]$. [/mm] Damit hast du gezeigt, dass dein Ideal nur von einem Element erzeugt wird.

>  Bei mir im Skript steht weiter, dass gilt [mm](x,2) = (1)[/mm] und
> daher Hauptideal.
>  Warum gilt [mm](x,2) = (1)[/mm] dies??

Du hast es eigentlich oben schon gezeigt, indem du gezeigt hast, dass [mm] $(X,2)=\IZ_{5}[X]=(1)$ [/mm]
Das von einer Einheit erzeugte Ideal ist immer bereits der ganze Ring.

Vielleicht noch eine Möglichkeit, wie man noch direkter einsehen kann, dass [mm] $(X,2)\:$ [/mm] Hauptideal ist: es gilt $3X [mm] \in \IZ_5[X] \Rightarrow [/mm] 3X*2 = (3*2)X = X [mm] \in [/mm] (2) [mm] \Rightarrow [/mm] (X,2)=(2)$

LG Lippel


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]