matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGraphentheorieHamiltonpfade Zerlegung K^n
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Graphentheorie" - Hamiltonpfade Zerlegung K^n
Hamiltonpfade Zerlegung K^n < Graphentheorie < Diskrete Mathematik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Graphentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Hamiltonpfade Zerlegung K^n: Rückfrage
Status: (Frage) überfällig Status 
Datum: 10:17 Do 22.10.2015
Autor: Mathestern111

Meine Frage:
Hallo ihr Lieben,

ich halte nächste Woche einen Vortrag über Hamiltonkreise und dachte ich habe soweit alles verstanden.. Leider sind mir doch noch ein paar Fragen gekommen.

1) Warum muss man fordern, dass es sich um einen vollständigen Graphen handelt, wenn dieser in kantendisjunkte Hamiltonpfade/Hamiltonkreise zerlegbar sein kann?
2) Wie beweise ich die Hinrichtung von "Ein vollständiger Graph mit n Knoten ist in kantendisjunkte Hamiltonpfade zerlegbar <-- --> n gerade ist.

Meine Ideen:
1) Bei einem vollständigen Graphen sind je zwei Knoten paarweise miteinander durch eine Kante verbunden. Das heißt, dass wir die Anzahl der Kanten in diesem Graphen kennen und dies ist eine notwendige Voraussetzung dafür, dass wir es zerlegen können, weil wir ja sonst dies nicht für beliebige Anzahl n von Knoten zeigen können, da wir nicht wissen, welcher Knoten mit welchem anderen Knoten verbunden ist?

2) Wir wissen, dass ein vollständiger Graph genau [mm] 1/2 n (n-1) [/mm] Kanten besitzt. Grund: der Graph besteht aus n Knoten, die jeweils n-1 angrenzende Kanten besitzen. Das bedeutet aber, dass wir jede Kante sowohl am "Anfangsknoten" der Kante und am "Endknoten" der Kante mitzählen, d.h. jede Kante wird doppelt gezählt --> halbieren. Wir wissen zudem, dass jeder Hamiltonpfad aus genau n-1 Kanten besteht, da wir per Definition fordern, dass er jeden Knoten des Graphen genau einmal durchlaufen muss, aber nicht geschlossen sein muss. Können wir daraus direkt folgern, dass es genau [mm] 1/2 n [/mm]kantendisjunkte Hamiltonpfade in einem vollständigen Graphen gibt, weil wir ja wissen dass es genau [mm] 1/2 n [/mm] mal (n-1) Kanten gibt? Daraus könnten wir folgern, dass n damit ein Teiler der zwei ist und damit gerade sein muss. Stimmt das so?

Ich habe diese Frage auch in folgenden Foren auf anderen Internetseiten gestellt:
http://www.matheboard.de/thread.php?threadid=561202

        
Bezug
Hamiltonpfade Zerlegung K^n: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:20 Sa 24.10.2015
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Graphentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]