Halbgruppenhomomorphismen < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 00:43 So 24.10.2010 | Autor: | l1f3x |
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
Hallo,
ich habe gerade folgendes Problem: Es geht in einer Aufgabe hier darum, zu zeigen, dass ein Halbgruppenhomomorphismus zwischen Monoiden im Allgemeinen kein Monoidhomomorphismus ist. Dabei habe ich schon folgendes, grundlegendes Problem:
Warum gilt die bei Gruppen übliche Argumentation, dass das Bild des neutralen Elementes der einen Gruppe dem neutralen Element der anderen Gruppe entspricht, hier nicht? Damit meine ich folgendes:
[mm]f:G\to H, f(e_G * g)=f(g)=f(e_G)*f(g)für alle g\Rightarrow f(e_G)=e_H [/mm]
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 02:40 So 24.10.2010 | Autor: | felixf |
Moin!
> ich habe gerade folgendes Problem: Es geht in einer
> Aufgabe hier darum, zu zeigen, dass ein
> Halbgruppenhomomorphismus zwischen Monoiden im Allgemeinen
> kein Monoidhomomorphismus ist. Dabei habe ich schon
> folgendes, grundlegendes Problem:
> Warum gilt die bei Gruppen übliche Argumentation, dass das
> Bild des neutralen Elementes der einen Gruppe dem neutralen
> Element der anderen Gruppe entspricht, hier nicht? Damit
> meine ich folgendes:
>
> [mm]f:G\to H, f(e_G * g)=f(g)=f(e_G)*f(g)für alle g\Rightarrow f(e_G)=e_H[/mm]
Wenn $f$ surjektiv ist, gilt dies.
$f$ muss aber nicht surjektiv sein.
Und das, was du hingeschrieben hast, ist auch nicht das Argument, was man in Gruppen benutzt. Da macht man naemlich: [mm] $f(e_G) [/mm] = [mm] f(e_G [/mm] * [mm] e_G) [/mm] = [mm] f(e_G) [/mm] * [mm] f(e_G)$; [/mm] und wenn man mit [mm] $f(e_G)^{-1}$ [/mm] multipliziert, steht da [mm] $e_H [/mm] = [mm] f(e_G)$.
[/mm]
Das meiste davon geht in einer Halbgruppe auch, aber der entscheidene Schritt, naemlich die Existenz von [mm] $f(e_G)^{-1}$, [/mm] die ist im Allgemeinen nicht gegeben!
(Und daran scheitert es dann auch...)
Was fuer echte Halbgruppen (die nicht gleichzeitig Gruppen sind) kennst du denn?
LG Felix
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 12:13 So 24.10.2010 | Autor: | l1f3x |
Danke schonmal! Mir ist jetzt klarer wo genau das Problem hier liegt. Als Monoide fallen mir die natürliche Zahlen ein, mit Addition oder Multiplikation als Verknüpfung. Da habe ich aber keine Idee wie ich einen entsprechenden Homomorphismus konstruieren könnte. Deshalb habe ich es mal mit dem Monoid versucht, der aus der Potenzmenge und der Inklusion als Verknüpfung besteht:
Sei [mm]M \subset N,\: G=(\mathcal{P}(M),\cap),\:H=(\mathcal{P}(N),\cap)[/mm] sind Monoide. Dann müsste folgende Abbildung:
[mm]f:G \to H,\:f(A)=A\:falls\:m \in A,\:f(A)= \emptyset\:falls\:m \not\in A[/mm]
Dabei ist m ein festes Element von M. Dies müsste ein Halbgruppenhomomorphismus sein. Aber da [mm]f(M)=M\not=N[/mm] kein Monoidhomomorphismus. Stimmt das? Gibt es da auch einfachere Beispiele?
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 19:17 So 24.10.2010 | Autor: | felixf |
Moin!
> Danke schonmal! Mir ist jetzt klarer wo genau das Problem
> hier liegt. Als Monoide fallen mir die natürliche Zahlen
> ein, mit Addition oder Multiplikation als Verknüpfung.
Die natuerlichen Zahen (inklusive Null!) zusammen mit der Multiplikation sind gut. Du kannst einen einfachen Halbgruppenmonomorphismus [mm] $\IN \to \IN \times \IN$ [/mm] angeben, der kein Monoidhomomorphismus ist.
> Da
> habe ich aber keine Idee wie ich einen entsprechenden
> Homomorphismus konstruieren könnte. Deshalb habe ich es
> mal mit dem Monoid versucht, der aus der Potenzmenge und
> der Inklusion als Verknüpfung besteht:
>
> Sei [mm]M \subset N,\: G=(\mathcal{P}(M),\cap),\:H=(\mathcal{P}(N),\cap)[/mm]
> sind Monoide. Dann müsste folgende Abbildung:
>
> [mm]f:G \to H,\:f(A)=A\:falls\:m \in A,\:f(A)= \emptyset\:falls\:m \not\in A[/mm]
>
> Dabei ist m ein festes Element von M.
Warum nicht einfach gleich $f$ als Inklusion $G [mm] \to [/mm] H$? Das reicht hier schon voellig.
> Dies müsste ein
> Halbgruppenhomomorphismus sein.
Ja, das duerfte es.
> Aber da [mm]f(M)=M\not=N[/mm] kein
> Monoidhomomorphismus. Stimmt das?
Falls $M$ eine echte Teilmenge von $N$ ist, ja.
> Gibt es da auch
> einfachere Beispiele?
Siehe oben :)
LG Felix
|
|
|
|