matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAlgebraHalbeinfache Algebren
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Algebra" - Halbeinfache Algebren
Halbeinfache Algebren < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Halbeinfache Algebren: Aufgabe
Status: (Frage) überfällig Status 
Datum: 19:18 Sa 22.04.2006
Autor: barbara_h

Aufgabe
Eine Algebra ist genau dann halbeinfach, wenn jeder A- Modul vollständig reduzibel ist.

Hallo:-)

Für mich ist es am schwierigsten folgende Richtung zu zeigen:
wenn A halbeinfache Algebra => jeder A-Modul ist vollständig reduzibel.

Wenn A halbeinfache Algebra, so ist der reguläre A-modul A^° vollständig reduzibel. Sei nun V ein weiterer A-Modul. Nun definiere eine A- lineare Abbildung f: A^° -> V. Bin ich so auf dem richtigen Weg?
Ich müsste nun die Abbildung so konstruieren, dass  ich dadurch zeigen kann, dass es auch zu jedem  Untermodul W von V ebenfalls ein Komlement gibt.
Ich würde mich sehr freuen, wenn mir jemand diesbezüglich weiterhelfen könnte.  Damit die Definitionen klar sind, habe ich sie unten mit angefügt.

Vielen lieben Dank,
Barbara


Wir haben halbeinfach folgendermaßen definiert: Eine Algebra heißt halbeinfach, wenn ihr regulärer Modul vollständig reduzibel ist.
Der reguläre Modul einer Algebra A ist: Ist A eine beliebige Algebra, so ist A selbst ein A-Modul unter Multiplikation von rechts, dieser Modul wird als regulärer Modul bezeichnet.
Und ein A-Modul V heißt vollständig reduzibel, wenn es zu jedem Untermodul W [mm] \subseteq [/mm] V ein Untermodul U [mm] \subseteq [/mm] V gibt, sodass V = W  [mm] \oplus [/mm] U.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Halbeinfache Algebren: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:20 So 30.04.2006
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]