matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-AnalysisHäufungspunkt
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Uni-Analysis" - Häufungspunkt
Häufungspunkt < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Häufungspunkt: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:14 Di 16.05.2006
Autor: sonisun

Aufgabe
Zeige, dass sup(h) und inf (H) in H liegen, wobei H die Menge der Häufungspunkte iner beschränkten Folge reeller Zahlen ist.

ich weiß, dass ich irgendwie mit dem Satz von Bolzano-Weierstraß arbeiten muss, doch ich weiß net wie. und ich muss die Aufgabe heute noch abgeben (sorry, dass ich so kurz vor knapp erst frage)
danke

        
Bezug
Häufungspunkt: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:42 Di 16.05.2006
Autor: MatthiasKr

Hallo sonisun,

> Zeige, dass sup(h) und inf (H) in H liegen, wobei H die
> Menge der Häufungspunkte iner beschränkten Folge reeller
> Zahlen ist.

Kann es sein, dass du irgendetwas bei der aufgabe vergessen hast? So stimmt die aussage nämlich nicht.... Nimm bspw. die folge

[mm] $a_i=(-1)^n\cdot \frac [/mm] 1n$. Diese Folge ist als konvergierende folge beschränkt und hat einen Häufungspunkt, nämlich den grenzwert 0. Weder supremum noch infimum der folge sind aber gleich 0, also nicht in der Menge der HP enthalten.

VG
Matthias

PS: Einwand hat sich erledigt, da auf einem Mißverständnis beruhend!

Bezug
                
Bezug
Häufungspunkt: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:52 Di 16.05.2006
Autor: sonisun

@ Matthias
Nein, es ist schon richtig. Ich soll ja nicht zeigen, dass die Grenzwerte einer Beschränkten Folge Häufungspunkte sind, sondern ich soll zeigen, dass das Supremum von den Häufungspunkten (!!!) einer beschränkten Folge in H liegt. und analog das selbe fürs Infimum.


Bezug
        
Bezug
Häufungspunkt: Antwort
Status: (Antwort) fertig Status 
Datum: 15:20 Di 16.05.2006
Autor: MatthiasKr

Hallo nochmal,

Ok, die aufgabe macht also doch sinn.....

> Zeige, dass sup(h) und inf (H) in H liegen, wobei H die
> Menge der Häufungspunkte iner beschränkten Folge reeller
> Zahlen ist.

Ich würde folgendermaßen argumentieren:
Sei [mm] $a_i$ [/mm] eine beschränkte reelle folge und $H$ die Menge der HP von [mm] $a_i$. [/mm] Da [mm] $a_i$ [/mm] beschränkt ist, muß auch $H$ beschränkt sein. Wir zeigen nun, dass HPs von H auch wieder in H liegen müssen, denn dann sind wir fertig. (Warum?)
Angenommen, H hat einen HP $x$ außerhalb von H. Dann gibt es in jeder Umgebung von $x$ unendlich viele HPs von [mm] $a_i$. [/mm] Das heißt aber, dass in jeder Umgebung von $x$ unendlich viele Glieder der Folge [mm] $a_i$ [/mm] liegen: $x$ ist also selber HP von [mm] $a_i$ [/mm] und somit in H enthalten. Widerspruch!

VG
Matthias

Bezug
                
Bezug
Häufungspunkt: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:29 Di 16.05.2006
Autor: sonisun

muss ich dieses "Warm", also warum reich es zu zeigen, dass Häufungspunkte von H wieder in H liegen? (anstatt von Supremum und Infimum)

muss ich dieses "Warum" mit KOnvergenz begründen?

oder eher so: weil H beschränkt ist, muss es wieder Häufungspuntke von H geben und Supremum und Infimum sind Häufungspunkte von H

Bezug
                        
Bezug
Häufungspunkt: Antwort
Status: (Antwort) fertig Status 
Datum: 16:38 Di 16.05.2006
Autor: MatthiasKr


> muss ich dieses "Warm", also warum reich es zu zeigen, dass
> Häufungspunkte von H wieder in H liegen? (anstatt von
> Supremum und Infimum)
>  
> muss ich dieses "Warum" mit KOnvergenz begründen?
>  
> oder eher so: weil H beschränkt ist, muss es wieder
> Häufungspuntke von H geben und Supremum und Infimum sind
> Häufungspunkte von H

H muss keine HPs haben. H kann auch nur endlich viele punkte enthalten (siehe mein vermeintliches gegenbeispiel). Dann liegen sup und inf aber trivialerweise in der Menge! Was ich meinte, war: liegen sup und/oder inf (hypothetischerweise) außerhalb von H, dann müssen sie HPs sein. Und dann kannst du so weiterargumentieren wie in meiner ersten antwort.

VG
Matthias

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]