matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegrationstheorieGute Abschätzung
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Integrationstheorie" - Gute Abschätzung
Gute Abschätzung < Integrationstheorie < Maß/Integrat-Theorie < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gute Abschätzung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:14 Mo 29.11.2010
Autor: DesterX

Hallo zusammen,

ich möchte gerne den Term mit einer sehr großen Konstanten $C>0$

[mm] $\bigg( \frac{1}{3+t} [/mm] - [mm] \bigg(\frac{1}{ln(3+t)}\bigg(\frac{1}{3+t}\bigg)^{C}\bigg)$ [/mm]

( $ t [mm] \geq [/mm] 0$) so nach oben abschätzen, so dass der Term integriebar wird, dh ich suche einen Term $h(t)$ mit
[mm] $\bigg( \frac{1}{3+t} [/mm] - [mm] \bigg(\frac{1}{ln(3+t)}\bigg(\frac{1}{3+t}\bigg)^{C}\bigg) \leq [/mm] h(t)$.

Allerdings sollte die Abschätzung etwas präziser sein als schlicht [mm] $h(t):=\frac{1}{3+t}$ [/mm] zu wählen. Insbesondere der Ausdruck
[mm] $\bigg(\frac{1}{3+t}\bigg)^{C}\bigg) [/mm] $
sollte möglichst erhalten bleiben.  Hättet ihr vielleicht eine Idee? Ich komme an dieser Stelle leider grad nicht weiter.

Vielen Dank für jede Hilfe und viele Grüße,
Dester



        
Bezug
Gute Abschätzung: Antwort
Status: (Antwort) fertig Status 
Datum: 21:34 Mo 29.11.2010
Autor: leduart

hallo
1/ln(3+t)>1/(3+t) da es abgezogen wird  verkleinerst du also damit.
Gruss leduart


Bezug
                
Bezug
Gute Abschätzung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:54 Mo 29.11.2010
Autor: DesterX

Ok, dank dir. Ich schau mal, ob ich so zum Ziel komme.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]