Gruppentheorie Cartergruppe < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
|
Aufgabe | Eine nilpotente Untergruppe C einer endlichen auflösbaren Gruppe G heißt Cartergruppe von G, falls für jede Untergruppe H von G mit [mm] C \subseteq H [/mm] und jeden Normalteiler K von H mit nilpotenter Faktorgruppe H/K gilt: H=CK.
Zeige das eine nilpotente Untergruppe C von G genau dann eine Cartergruppe von G ist, wenn [mm] N_G(C)=C [/mm] gilt. |
Ich habe bereits die Richtung gezeigt: Für jede Cartergruppe gilt [mm] N_G(C)=C [/mm]. Die andere Richtung bereitet mir Probleme. Ich vermute, dass man eine Verallgemeinerung des Frattini-Arguments benutzen kann, so dass man in etwa [mm] H=N_G(C)K=CK [/mm] hat. Dazu könnte man zum Beispiel zeigen, dass K bereits transitiv auf der Menge [mm] \{hCh^{-1}:h\in H\} [/mm] durch Konjugation operiert, was mir allerdings noch nicht gelingt. Es gibt eine Reihe weiterer Aussagen über Cartergruppen die ich schon bewiesen haben (und die daher auch verwendet werden können): Jede endliche auflösbare Gruppe enthält eine Cartergruppe. Je zwei Cartergruppen von G sind konjugiert. Für jeden Normalteiler N von G und jede Cartergruppe C von G ist CN/N eine Cartergruppe von G/N. u.ä.
In den meisten Artikeln (insbesondere von Carter selbst) wird die Cartergruppe leider immer durch diese äquivalente Eigenschaft definiert.
Vielen Dank für Vorschläge!
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 00:20 Di 03.07.2007 | Autor: | matux |
$MATUXTEXT(ueberfaellige_frage)
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 21:19 Do 29.11.2007 | Autor: | burnside |
also meine frage zur Cartergruppe hat sich nun geklärt.
|
|
|
|