matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAlgebraGruppenring halbeinfach
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Algebra" - Gruppenring halbeinfach
Gruppenring halbeinfach < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gruppenring halbeinfach: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 12:51 So 24.01.2016
Autor: UniversellesObjekt

Sei $k$ ein halbeinfacher (möglicherweise nichtkommutativer) Ring und $G$ eine endliche Gruppe, deren Ordnung eine Einheit in $k$ ist. Dann ist der Gruppenring $k[G]$ wieder halbeinfach.

[Beweis: Sei $M$ ein $k[G]$-Modul. Nach der universellen Eigenschaft ist das dasselbe, wie ein $k$-Modul $M'$ mit $G$-Wirkung; hierbei ist $M'$ durch den unterliegenden $k$-Modul von $M$ gegeben. Untermoduln von $M$ entsprechen $G$-invarianten Untermoduln von $M'$. Sei [mm] $N\le [/mm] M$ ein Untermodul. Da $k$ halbeinfach ist, spaltet die Einbettung [mm] $N'\hookrightarrow [/mm] M'$, etwa durch eine $k$-lineare Projektion $p'$. Durch Durchschnittsbildung

[mm] $p=\frac{1}{\operatorname{ord}G}\sum_{g\in G}g^{-1}p'g$ [/mm]

erhält man eine $k[G]$-lineare Abbildung, welche die Einbettung von $k[G]$-Moduln [mm] $N\hookrightarrow [/mm] M$ spaltet.]

Frage: Ist meine Voraussetzung eine notwendige Bedingung dafür, dass $k[G]$ halbeinfach ist?

Liebe Grüße,
UniversellesObjekt

        
Bezug
Gruppenring halbeinfach: Antwort
Status: (Antwort) fertig Status 
Datum: 08:54 Mi 27.01.2016
Autor: hippias

Auf die schnelle ist dies meiner Einschätzung nach notwendig. Ich betrachte den $k$-Homo. [mm] $\phi:k[G]\to [/mm] k$, der [mm] $g\in [/mm] G$ auf $1$ abbildet, dessen Kern ein $G$-Modul ist. Ich meine, sein $G$-Komplement ist [mm] $k(\sum_{g\in G} [/mm] g)$. Da [mm] $\phi$ [/mm] surjektiv ist, folgt, dass $|G|1$ in $k$ invertierbar ist.

Um zu zeigen, dass auch $k$ halbeinfach ist, würde ich den Untermodul [mm] $J(\sum_{g\in G} g)\leq [/mm] k[G]$, wobei $J$ ein Ideal von $k$ ist, und sein Komplement betrachten.



Bezug
        
Bezug
Gruppenring halbeinfach: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:20 Mi 27.01.2016
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]