matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAlgebraGruppenoperationen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Algebra" - Gruppenoperationen
Gruppenoperationen < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gruppenoperationen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:23 So 02.12.2007
Autor: Leni-H

Aufgabe
Rechne für die angegebene Operation nach, dass sie wirklich eine ist. Bestimme weiter die Bahnen und die Stabiliatoren der einzelnen Elemente.

Sei G = [mm] Z_{6} [/mm] und G operiere auf {a,b,c,d,e,f} wie folgt:
1 [mm] \mapsto \pmat{ a& b & c & d & f \\ b & c & a & e & d &f }. [/mm]

Hallo!

Ich komme bei obiger Aufgabe irgendwie nicht ganz klar. Also ich weiß, dass ich aus der Aufgabenstellung herauslesen kann, wie die 1 auf allen Mengenelemente operiert, also das gilt:

1.a = b
1.b = c
1.c = a

usw.


Nun muss ich ja aber zeigen, dass es sich wirklich um eine Gruppenoperation handelt, dass also gilt

g.(h.w) = (g+h).w           für alle g,h [mm] \in Z_{6} [/mm] und alle w [mm] \in [/mm] {a,b,c,d,e,f}.

Außerdem muss ich noch zeigen, dass

0.w = w für alle w


Leider komm ich schon beim Zeigen von der ersten Bedingung nicht weiter. Ich weiß nicht, wie ich das einbringen kann, was ich schon üner die Operation von der 1 auf der Menge weiß.

Vielleicht kann mir jemand weiterhelfen.

Wär echt super!

LG Leni

        
Bezug
Gruppenoperationen: Antwort
Status: (Antwort) fertig Status 
Datum: 22:14 So 02.12.2007
Autor: andreas

hi

überlege dir doch mal, dass [mm] $\mathbb{Z}_6$ [/mm] zyklisch ist, also von der $1$ erzeugt wird. wenn du nun also $3 [mm] \cdot [/mm] a$ berechnen willst, so musst du doch einfach $(1 + 1 + 1) [mm] \cdot [/mm] a$ berechnen. um die gruppenoperation sinnvoll zu definieren setzt du folglich einfach $(1 + 1 + ... + 1)a := 1 [mm] \cdot [/mm] (1 [mm] \cdot [/mm] ( ... 1 [mm] \cdot [/mm] a) ...))$ und damit ist das erste axiom für die gruppenoperation auch schon klar. du musst natürlich noch verifizieren, dass $6 [mm] \cdot [/mm] x = x$ für alle $x [mm] \in \{a, b, c, d, e, f \}$ [/mm] (oben in der von dir angegeben definition ist außerdem ein buchstabe verloren gegenagen).


grüße
andreas

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]