matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra SonstigesGruppenisomorphismus
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Lineare Algebra Sonstiges" - Gruppenisomorphismus
Gruppenisomorphismus < Sonstiges < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gruppenisomorphismus: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:52 Mi 27.06.2012
Autor: Lu-

Aufgabe
Hallo
Ich habe eine Frage: Wie weißt man einen Gruppenisomorphismus nach?

Ein Gruppenisomorphismus ist ein bijektiver Gruppenhomomorphismus.

Ich habe nachgewiesen dass es sich bei deien Abbildungen um Gruppen handelt.
Nun ist zuzeigen, dass die Abbildung zwischen den beiden Gruppen bijektiv ist. Und was ist da noch zu zeigen?

Liebe Grüße

        
Bezug
Gruppenisomorphismus: Antwort
Status: (Antwort) fertig Status 
Datum: 13:00 Mi 27.06.2012
Autor: fred97


> Hallo
>  Ich habe eine Frage: Wie weißt man einen
> Gruppenisomorphismus nach?
>  Ein Gruppenisomorphismus ist ein bijektiver
> Gruppenhomomorphismus.
>  
> Ich habe nachgewiesen dass es sich bei deien Abbildungen um
> Gruppen handelt.

Eine Abbildung ist keine Gruppe !


>  Nun ist zuzeigen, dass die Abbildung zwischen den beiden
> Gruppen bijektiv ist. Und was ist da noch zu zeigen?

Seien  (G, [mm] \circ) [/mm] und (H, [mm] \star) [/mm] Gruppen.  Eine Funktion [mm] \phi\colon G\to [/mm] H heißt Gruppenhomomorphismus, wenn für alle Elemente x, y [mm] \in [/mm] G gilt:

   $ [mm] \phi(x \circ [/mm] y) = [mm] \phi(x) \star \phi(y). [/mm] $

FRED

>  
> Liebe Grüße


Bezug
                
Bezug
Gruppenisomorphismus: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 13:08 Mi 27.06.2012
Autor: Lu-

Aufgabe
Sei V ein n dimensionaler reeller Vektorraum und g: V [mm] \times [/mm] V [mm] ->\mathbb{R} [/mm]  eine symmetrische Billinearform mit SIgnatur (p,q) wobei p+q =n.
Weiters sei B eine geordnete Basis von V so dass [mm] [g]_B [/mm] =  [mm] \begin{pmatrix} I_p & \\ &- I_q \end{pmatrix} [/mm]
[mm] O_{p,q} [/mm] := [mm] \{A \in M_{n x n} (\mathbb{R}) : A^t \begin{pmatrix} I_p & \\ &- I_q \end{pmatrix} A = \begin{pmatrix} I_p & \\ &- I_q \end{pmatrix} \} [/mm]
ist eine Gruppe bez Matrizenmultiplikation. Zeige dass
O(V,g) [mm] \cong O_{p,q} [/mm] , [mm] \phi [/mm] <-> [mm] [\phi]_B [/mm]
einen Gruppeninsomrophismus ist

hallo,
Okay, ich poste mal meine aufgabe dazu. Weil ich nicht ganz weiterkomme.


Im Skript nachgeschlagen:
O(V,g) = [mm] \{\phi \in GL(v) :\forall v,w \in V : g(\phi(v), \phi(w))=g(v,w)\} [/mm]  bildet Gruppe bez Komposition von Abbildungen

(O(V,g)  bzgl Komposition von Abbildungen)
[mm] (O_{p,q} [/mm] bzgl Matrizenmultiplikation) eine gruppe
Eine Funktion F: O(V,g) [mm] ->O_{p,q} [/mm] heißt Gruppenisomorphimsmus,
wenn F bijektiv und
für alle [mm] \phi, \psi \in [/mm] O(V,g) gilt
[mm] F(\phi \circ \psi) [/mm] = [mm] F(\phi) F(\psi) [/mm]

Kannst du mir da nochmal weiterhelfen?
LG

Bezug
                        
Bezug
Gruppenisomorphismus: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:49 Mi 27.06.2012
Autor: Lu-

keine eine idee??

LG

Bezug
                        
Bezug
Gruppenisomorphismus: Antwort
Status: (Antwort) fertig Status 
Datum: 23:44 Mi 27.06.2012
Autor: ChopSuey

Hallo,

jetzt hast du alles aufgeschrieben, was du brauchst, um die Aufgabe zu lösen. Wo kommst du nicht weiter?

Bei der Bijektivität? Beim Nachweis, dass es sich um einen Gruppenhomomorphismus handelt?
Zeig mal, was du dir überlegt hast.

Viele Grüße
ChopSuey


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]