matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGruppe, Ring, KörperGruppenhomomorphismen
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Gruppe, Ring, Körper" - Gruppenhomomorphismen
Gruppenhomomorphismen < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gruppenhomomorphismen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 08:23 Mi 20.05.2009
Autor: ms2008de

Aufgabe
Bestimmen Sie alle Gruppenhomomorphismen von
[mm] (\IZ, [/mm] +) nach [mm] (\IQ,+) [/mm]

Hallo,
also ich behaupte mal, dass alle Homomorphismen von der Form [mm] \alpha(x)= [/mm] qx , [mm] \forall [/mm] q [mm] \in \IQ [/mm] ist.
Das dies ein Homomorphismus is, konnte ich bereits zeigen, nur hänge ich am 2. Teil der Aufgabe, zz. dass es wirklich keine weiteren Morphismen gibt. Wie geht man bei sowas im Allgemeinen vor. Wäre sehr dankbar, wenn mir jemand helfen könnte

Viele Grüße

        
Bezug
Gruppenhomomorphismen: Antwort
Status: (Antwort) fertig Status 
Datum: 08:30 Mi 20.05.2009
Autor: statler

Guten Morgen!

> Bestimmen Sie alle Gruppenhomomorphismen von
>  [mm](\IZ,[/mm] +) nach [mm](\IQ,+)[/mm]

>  also ich behaupte mal, dass alle Homomorphismen von der
> Form [mm]\alpha(x)=[/mm] qx , [mm]\forall[/mm] q [mm]\in \IQ[/mm] ist.
>  Das dies ein Homomorphismus is, konnte ich bereits zeigen,
> nur hänge ich am 2. Teil der Aufgabe, zz. dass es wirklich
> keine weiteren Morphismen gibt.

Naja, [mm] \IZ [/mm] ist eine zyklische Gruppe und wird z. B. von der 1 erzeugt. Was reicht also, um den Homomorphismus festzulegen?

Gruß aus HH-Harburg
Dieter

Bezug
                
Bezug
Gruppenhomomorphismen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 08:43 Mi 20.05.2009
Autor: ms2008de

Zu wissen was  [mm] \alpha(1) [/mm]  und [mm] \alpha(-1) [/mm] ist?Okay, diese [mm] \alpha [/mm] miteinander verknüpft komm ich auf jeden Wert von [mm] \IZ. [/mm] Muss ich da nun ne vollständige Induktion oder so durchführenum um es zu zeigen?  Irgendwie bringt mich das in der Beweisidee nicht wirklich weiter.

Bezug
                        
Bezug
Gruppenhomomorphismen: Antwort
Status: (Antwort) fertig Status 
Datum: 09:00 Mi 20.05.2009
Autor: statler


> Zu wissen was  [mm]\alpha(1)[/mm]  und [mm]\alpha(-1)[/mm] ist?Okay, diese
> [mm]\alpha[/mm] miteinander verknüpft komm ich auf jeden Wert von
> [mm]\IZ.[/mm] Muss ich da nun ne vollständige Induktion oder so
> durchführenum um es zu zeigen?  Irgendwie bringt mich das
> in der Beweisidee nicht wirklich weiter.  

Wenn du ganz vorne starten willst, dann müßtest du nacheinander zeigen:
Das Bild des neutralen Elementes ist das neutrale Element.
Das Bild des Inversen ist das Inverse des Bildes.
Das Bild einer n-ten Potenz ist die n-te Potenz des Bildes (mit vollst. Ind.)

Dann hast du den allgmeinen Apparat und bist durch, weil dann
[mm] \alpha(s) [/mm] = [mm] \alpha(s*1) [/mm] = [mm] s*\alpha(1) [/mm] für s [mm] \in \IZ [/mm] ist.
Also brauchst du nur das Bild der 1, und das kannst du beliebig vorgeben.

Gruß
Dieter


Bezug
                                
Bezug
Gruppenhomomorphismen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:50 Do 21.05.2009
Autor: ms2008de

Danke, das war sehr hilfreich

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]