Gruppenhomo. und Untergruppe < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 18:08 So 28.01.2007 | Autor: | gore |
Aufgabe | Sei [mm] \phi [/mm] : G [mm] \to [/mm] H ein Homomorphismus von Gruppen.
Zeigen Sie:
Ist U < G eine Untergruppe, so ist die Bildmenge [mm] \phi [/mm] (U) eine Untergruppe von H.
|
Hi @ all.
Hm, also, dass mit den Homomorphismen bereitet mir echt Zahnschmerzen. Ich weiß, dass für den Homomorphismus gilt, dass [mm] Kern(\phi) [/mm] := {g [mm] \in [/mm] G | [mm] \phi(g) [/mm] = [mm] e_2} [/mm] und [mm] Bild(\phi) [/mm] := { [mm] \phi(g) [/mm] | g [mm] \in [/mm] G}.
Ich denke, ich muss mit diesen Informationen und der Tatsache, dass U Untergruppe ist (also e [mm] \in [/mm] U, a*b [mm] \in [/mm] U und a^(-1) [mm] \in [/mm] U).
Nur wie ich die Sache zusammenbringe und die Aussage zeige, ist mir schleierhaft :/
Lg,
Andi
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
|
|
|
|
Hallo Andi,
> Sei [mm]\phi[/mm] : G [mm]\to[/mm] H ein Homomorphismus von Gruppen.
> Zeigen Sie:
> Ist U < G eine Untergruppe, so ist die Bildmenge [mm]\phi[/mm] (U)
> eine Untergruppe von H.
>
> Hi @ all.
>
> Hm, also, dass mit den Homomorphismen bereitet mir echt
> Zahnschmerzen. Ich weiß, dass für den Homomorphismus gilt,
> dass [mm]Kern(\phi)[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)
:= {g [mm]\in[/mm] G | [mm]\phi(g)[/mm] = [mm]e_2}[/mm] und [mm]Bild(\phi)[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)
> := { [mm]\phi(g)[/mm] | g [mm]\in[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)
G}.
> Ich denke, ich muss mit diesen Informationen und der
> Tatsache, dass U Untergruppe ist (also e [mm]\in[/mm] U, a*b [mm]\in[/mm] U
> und a^(-1) [mm]\in[/mm] U).
War schon das Untergruppenkriterium dran? Damit geht's recht "kompakt" .
Dann muß man sich klar machen, daß unter dem Hom. das neutrale Element von G auf das von H, und Inverse in G auf Inverse in H abgebildet werden.
Mfg
zahlenspieler
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 13:08 Mo 29.01.2007 | Autor: | gore |
Hi,
danke. Ok, ich denke das hat mich schon ein Stück weiter gebracht...
Ich hab da mal einen Lösungsansatz gemacht, ist der richtig?
Wegen [mm] \phi(e_G)=e_H [/mm] und [mm] \forall g\in [/mm] G: [mm] \phi(g^{-1}) [/mm] = [mm] \phi(g)^{-1} [/mm] bildet der Gruppenhomo. das neutrale Element von G auf das von H und das Inverse von G auf das von H ab.
Da nach dem Untergruppenkriterium das neutrale Element von G auch in U liegen muss und ein Inverses vorhanden sein muss gilt:
[mm] \phi(e_G)=e_H (e_G \in [/mm] U) und [mm] \forall u\in [/mm] U: [mm] \phi(u^{-1}) [/mm] = [mm] \phi(u)^{-1}.
[/mm]
Stimmt das so weit?? Würds natürlich noch etwas mathematischer aufschreiben... Mir fehlt noch wie ich den dritten Punkt des Untergruppenkriteriums, also: u, v [mm] \in [/mm] U [mm] \Rightarrow [/mm] u [mm] \circ [/mm] v [mm] \in [/mm] U, unterbringen soll...
LG
Andi
|
|
|
|
|
Hi Andi,
> Hi,
> danke. Ok, ich denke das hat mich schon ein Stück weiter
> gebracht...
>
> Ich hab da mal einen Lösungsansatz gemacht, ist der
> richtig?
>
> Wegen [mm]\phi(e_G)=e_H[/mm] und [mm]\forall g\in[/mm] G: [mm]\phi(g^{-1})[/mm] =
> [mm]\phi(g)^{-1}[/mm] bildet der Gruppenhomo. das neutrale Element
> von G auf das von H und das Inverse von G auf das von H
> ab.
>
> Da nach dem Untergruppenkriterium das neutrale Element von
> G auch in U liegen muss und ein Inverses vorhanden sein
> muss gilt:
Nein, so rum gehts nicht! Für mich liest sich das so, als würdest Du Inverses/Einselement (in [mm] $\phi(U)$) [/mm] *voraussetzen*. Das mußt Du aber zeigen.
Zumindest kenne ich zwei äquivalente Formulierungen des Untergruppenkriteriums:
Sei G eine Gruppe und $U [mm] \subset [/mm] G$ nichtleer. Wenn
(I) [mm] $\forall [/mm] a [mm] \in [/mm] U: [mm] a^{-1} \in [/mm] U$ und
(II) [mm] $\forall [/mm] a,b [mm] \in [/mm] U: [mm] ab\in [/mm] U$
gilt, dann ist $U$ Untergruppe von G.
Diese beiden Bedingungen kann man auch zu einer einzigen zusammenfassen: $a,b [mm] \in [/mm] U [mm] \folgt ab^{-1} \in U\quad \forall [/mm] a,b [mm] \in [/mm] U$.
> [mm]\phi(e_G)=e_H (e_G \in[/mm] U) und [mm]\forall u\in[/mm] U: [mm]\phi(u^{-1})[/mm]
> = [mm]\phi(u)^{-1}.[/mm]
>
> Stimmt das so weit?? Würds natürlich noch etwas
> mathematischer aufschreiben... Mir fehlt noch wie ich den
> dritten Punkt des Untergruppenkriteriums, also: u, v [mm]\in[/mm] U
> [mm]\Rightarrow[/mm] u [mm]\circ[/mm] v [mm]\in[/mm] U, unterbringen soll...
Hm, wie sieht [mm] $\phi(U)$ [/mm] aus? [mm] $\phi(U):={\phi(u) \mid u \in U}$. [/mm] Wenn Du also zwei Elemente aus [mm] $\phi(U)$ [/mm] hast, gibts sicher "Urbilder" davon in U.
Mfg
zahlenspieler
|
|
|
|
|
Status: |
(Frage) überfällig | Datum: | 15:46 Mo 29.01.2007 | Autor: | gore |
hi, danke...
ok... wenn U Untergruppe von G ist, ist dann auch das neutrale Element von G das neutrale Element von U??
denn wenn doch das neutrale Element von G das neutrale Element von U ist, dann wird doch automatisch auch das neutrale Element von U auf das von G abgebildet, bei [mm] \phi(U), [/mm] oder?
oder werfe ich da die sachen total durcheinander? :/
Gruß,
Andi
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 16:20 Mi 31.01.2007 | Autor: | matux |
$MATUXTEXT(ueberfaellige_frage)
|
|
|
|