matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGruppe, Ring, KörperGruppen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Gruppe, Ring, Körper" - Gruppen
Gruppen < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gruppen: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 20:53 Mo 01.06.2009
Autor: oby

Aufgabe
Sei G eine Gruppe mit |G| = pq und p<q.
Zeigen Sie: Falls q [mm] \not= [/mm] 1+kp für jede Zahl k [mm] \in [/mm] Z, dann ist G zyklisch der Ordnung pq.

Hallo matheraum!
Also ich hab mal so angesetzt:
Da |G|=pq folgt, dass G p-Sylowuntergruppe enthält und q-Sylowuntergruppen. Jede q-Sylowuntergruppe ist normal in G, also hat G genau eine q-Sylowunterguppe.
Weiter bin ich leider nicht gekommen..
Vielen Dank für eure Hilfe
MfG Oby

        
Bezug
Gruppen: Antwort
Status: (Antwort) fertig Status 
Datum: 04:21 Di 02.06.2009
Autor: felixf

Hallo Oby

> Sei G eine Gruppe mit |G| = pq und p<q.
>  Zeigen Sie: Falls q [mm]\not=[/mm] 1+kp für jede Zahl k [mm]\in[/mm] Z, dann
> ist G zyklisch der Ordnung pq.

Und $p, q$ sollen Primzahlen sein?

>  Also ich hab mal so angesetzt:
>  Da |G|=pq folgt, dass G p-Sylowuntergruppe enthält und
> q-Sylowuntergruppen. Jede q-Sylowuntergruppe ist normal in
> G, also hat G genau eine q-Sylowunterguppe.

Wieviele $p$-Sylowuntergruppen gibt es denn?

LG Felix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]