Gruppe der Ordnung 120 < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 14:02 Di 23.08.2011 | Autor: | Harris |
Hi!
Ich würde gerne zeigen, dass eine Gruppe der Ordnung 120 nicht einfach ist.
Annahme: Es gibt eine, die einfach ist.
Funktioniert die Argumentation so:
Nach Sylow ist die Anzahl der 5-Sylowgruppen [mm] s_6\in\{1,6\} [/mm] also 6, sonst sind wir fertig.
G operiert transitiv auf der Menge der 5-Sylowgruppen [mm] \{P_1,...,P_6\} [/mm] per Konjugation mit
[mm] \gamma:GxM\rightarrow [/mm] M
[mm] \gamma(g,P_i)=g^{-1}P_ig
[/mm]
Dies induziert einen Homomorphismus [mm] $\varphi:G\rightarrow Sym_M\cong S_6$ [/mm] mit [mm] $\varphi(g)=\gamma_g$ [/mm] wobei [mm] $\gamma_g:P_i\rightarrow g^{-1}P_ig$
[/mm]
Nun ist [mm] $G/_{Kern(\varphi)}\cong im\varphi\leq S_6.
[/mm]
Der Kern ist nun die Menge [mm] \{g\in\G : g^{-1}P_ig=P_i\}=N_G(P_i) [/mm] wobei [mm] N_G [/mm] den Normalisator angibt, der gleichzeitig wegen der Konjugation der Stabilisator der Operation ist.
Nun ist die Länge der Bahn der transitiven Operation von oben 6 und das entspricht dem Index des Normalisators, also [mm] $[G:N_G(P_i)]=|G|/6=20. [/mm] Also hat der Kern die Mächtigkeit 20, und da der Kern ein Normalteiler ist und wegen $|Kern|=20$ nichttivial ist, ist der Widerspruch erreicht.
Passt die Argumentation so? Vor allem gegen Ende bin ich mir etwas unsicher.
Grüße,
Harris
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 20:42 Di 23.08.2011 | Autor: | hippias |
> Der Kern ist nun die Menge [mm]\{g\in\G : g^{-1}P_ig=P_i\}=N_G(P_i)[/mm]
> wobei [mm]N_G[/mm] den Normalisator angibt, der gleichzeitig wegen
> der Konjugation der Stabilisator der Operation ist.
Die Argumentation stimmt so nicht, denn [mm] N_{G}(P) [/mm] ist nur der Stabilisator von P in G, waehrend der Kern der Operation von G auf der Menge [mm] Syl_{5}(G) [/mm] gleich dem Durchschnitt saemtlicher 6 Stabilisatoren ist - der Kern laesst alle 5-Sylowgruppen fest. Jedoch laesst sich Dein Beweis leicht retten: Da G nach Annahme einfach ist, ist besagter Kern =1 (=G kann er nicht sein). Damit ist aber G isomorph zu einer Untergruppe der [mm] S_{6}. [/mm] Weil aber G und [mm] S_{6} [/mm] gleiche Ordnung haben, ist G sogar isomorph zur [mm] S_{6}, [/mm] welches eine Gruppe ist, die bekanntlich nicht einfach ist.
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 21:18 Di 23.08.2011 | Autor: | hippias |
Weil aber G und
> [mm]S_{6}[/mm] gleiche Ordnung haben,
Das ist natuerlich falsch, die Ordnung von [mm] S_{6} [/mm] ist 720! Also ist meine Schlussweise auch nicht richtig. Ich kann meinen Fehler auf die schnelle nur so verbessern, als dass ich weiss, dass alle Untergruppen der [mm] S_6, [/mm] die den Index 6 haben - wie unser G - isomorph zu [mm] S_5 [/mm] sind, also nicht einfach. Aber ich schaetze, der Beweis fuer Deine Behauptung geht einfacher. Tut mir Leid.
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 07:03 Mi 24.08.2011 | Autor: | statler |
Guten Morgen!
Zu deinem Trost: Der Beweis scheint nicht so ganz einfach zu sein, siehe hier mit einem weiteren Verweis.
Gruß aus HH-Harburg
Dieter
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 20:44 Mi 24.08.2011 | Autor: | hippias |
Nun hat sich aber doch noch mein Ehrgeiz geregt. Mein Beweis ist denke ich elementar und nicht einmal besonders lang.
Sei G Gruppe der Ordnung 120. Dann ist G nicht einfach.
Beweis: Angenommen G ist einfach.
Im Folgenden sei stets [mm] $S\in Syl_{2}(G)$ [/mm] und $X:= [mm] Syl_{2}(G)$.
[/mm]
1. Ist M< G, so gilt |G:M|>5:
Angenommen der Index ist [mm] $\leq [/mm] 5$. Da G nicht trivial -sogar transitiv -auf den Nebenklassen von M in G operiert, ist der Kern dieser Operation wegen der Einfachheit =1. Folglich ist G isomorph zu einer Untergruppe von S(G/M), wobei letztere Gruppe nach Annahme die Ordnung hoechstens 5!=120 hat. Da auch G die Ordnung 120 hat,
folgt, dass |G:M|= 5 und G ist isomorph zur [mm] S_{5}, [/mm] im Widerspruch zur Einfachheit von G.
Folgerung 1'. [mm] $|Syl_{2}|= [/mm] 15$:
Dies folgt sofort aus 1. mit $M:= [mm] N_{G}(S)< [/mm] G$.
2. Seien [mm] $S,T\in Syl_{2}$ [/mm] mit [mm] $S\neq [/mm] T$. Es sei $D:= [mm] S\cap [/mm] T>1$. Dann ist $D$ nicht in $S$ und $T$ normal. Insbesondere gilt $|D|= 2$:
Angenommen $D$ waere in $S$ und $T$ normal. Dann sind [mm] $S,T\leq N_{G}(D)< [/mm] G$.
Folglich enthaelt [mm] $N_{G}(D)$ [/mm] mindestens $3$ 2-Sylowgruppen und somit waere [mm] $N_{G}(D)$ [/mm] mindestens von der Ordnung $24$; Widerspruch zu 1.
Waere $|D|= 4$, so waere $D$ maximal in $S$ und $T$ also normal.
Abschluss: Wir betrachten nun die Operation von $S$ durch Konjugation auf $X$. $S$ besitzt genau einen Fixpunkt, naemlich $S$ selber. Sei [mm] $S\neq T\in [/mm] X$. Wegen [mm] $N_{G}(T)= [/mm] T$ (siehe 1'), folgt mit 2., dass [mm] $|N_{S}(T)|= |S\cap T|\leq [/mm] 2$. Folglich hat $S$ auf $X$ sonst nur noch Bahnen der Laenge $4$ und $8$, was im Widerspruch zu $|X|= 15$ steht.
|
|
|
|