matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenInformatik-TrainingGrundl. Endl. Automaten (2)
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Informatik-Training" - Grundl. Endl. Automaten (2)
Grundl. Endl. Automaten (2) < Training < Informatik < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Informatik-Training"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Grundl. Endl. Automaten (2): Reg. Ausdrücke
Status: (Übungsaufgabe) Aktuelle Übungsaufgabe Status (unbefristet) 
Datum: 17:34 Do 16.02.2006
Autor: mathiash

Aufgabe
(1) Definiere die Klasse RE der regulären Ausdrücke über dem Alphabet [mm] \{0,1\} [/mm]
(zB durch Angabe einer BNF). Definiere die semantische Funktion [mm] \varphi\colon RE\to P(\{0,1\}^{\star}). [/mm]

(2) Zeige: Zu jedem  regulären Ausdruck R gibt es einen äquivalenten NEA A, d.h. mit [mm] L(A)=\varphi [/mm] (R).
Hinweis dazu: Führe den Beweis durch strukturierte Induktion über den Aufbau der reguláren Ausdrücke.

(3) Zeige umgekehrt: Zu jedem DEA A gibt es einen reg. Ausdruck R mit [mm] \varphi [/mm] (R)=L(A).

Hallo,

Teil 2 einer kleinen, für einen ganz speziellen Adressatenkreis geschriebenen Serie.

Ein Hinweis allgemein, damit nicht Zeit durch etwaige Schwierigkeiten verloren geht:

- Versuch(t), die Fragen so ad hoc zu beantworten. Falls das nicht klappt, so sollte ein Skript
oder so zur Hand genommen werden, dort dann konzentriert und gezielt das nachgeschaut werden, was
zur Benatwortung der Frage notwendig ist.

Pruefungslernen heisst vor allem Konzentration auf das Wesentliche und Trainieren der Intuition, damit
man die Dinge geschickt und kompakt bei sich abspeichern kann und trotzdem nicht den Kopf total zu hat.

Dies als nur einige wohlgemeinte
Anmerkungen....

Mathias

        
Bezug
Grundl. Endl. Automaten (2): Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:19 So 19.02.2006
Autor: Bastiane

Hallo Mathias...

> (1) Definiere die Klasse RE der regulären Ausdrücke über
> dem Alphabet [mm]\{0,1\}[/mm]
>  (zB durch Angabe einer BNF). Definiere die semantische
> Funktion [mm]\varphi\colon RE\to P(\{0,1\}^{\star}).[/mm]

[mm] (\{0,1\}\cup\{(,),+,^{\star}\}\cup\{\emptyset,\Lambda\},\{\},,r) [/mm] mit r:

[mm] ::=0|1|(+)|()^{\star}|()|\emptyset|\Lambda [/mm]

[mm] \varphi\colon RE\to\cal{P}(\{0,1\}^{\star}): [/mm]

[mm] \varphi(0)=0 [/mm]
[mm] \varphi(1)=1 [/mm]
[mm] \varphi(\emptyset)=\emptyset [/mm]
[mm] \varphi(\Lambda)=\{\Lambda\} [/mm] (wieso muss denn hier eine Klammer drum?)
[mm] \varphi(R_1+R_2)=\varphi(R_1)\cup\varphi(R_2) [/mm]
[mm] \varphi(R_1R_2)=\varphi(R_1)\varphi(R_2) [/mm]
[mm] \varphi(R_1^{\star})=(\varphi(R_1))^{\star} [/mm]

für R, [mm] R_1, R_2 \in [/mm] RE

> (2) Zeige: Zu jedem  regulären Ausdruck R gibt es einen
> äquivalenten NEA A, d.h. mit [mm]L(A)=\varphi[/mm] (R).
>  Hinweis dazu: Führe den Beweis durch strukturierte
> Induktion über den Aufbau der reguláren Ausdrücke.

Mmh - wie mach ich das denn?
  

> (3) Zeige umgekehrt: Zu jedem DEA A gibt es einen reg.
> Ausdruck R mit [mm]\varphi[/mm] (R)=L(A).

Hierfür müsste doch eigentlich folgendes reichen:

Sei [mm] (S,M,s_0,F) [/mm] ein DEA, dann definiere ich eine BNF folgendermaßen:
für [mm] $s\in [/mm] F$: [mm] s\to\varepsilon [/mm]
für [mm] M(s,\sigma)=p: $s\to\sigma [/mm] p$
für [mm] $M(s,\sigma)=p\in [/mm] F$: [mm] s\to\sigma. [/mm]

Aber wie bringe ich das in Worte, was das mit der Aufgabenstellung zu tun hat?
  

> Teil 2 einer kleinen, für einen ganz speziellen
> Adressatenkreis geschriebenen Serie.

Hat dieser Adressatenkreis vielleicht Mächtigkeit 1? ;-)
  

> Ein Hinweis allgemein, damit nicht Zeit durch etwaige
> Schwierigkeiten verloren geht:

Mmh - schneller ginge es doch so: ich kann mit der Aufgabe nichts anfangen, also lasse ich es bleiben...
  

> - Versuch(t), die Fragen so ad hoc zu beantworten. Falls
> das nicht klappt, so sollte ein Skript
>  oder so zur Hand genommen werden, dort dann konzentriert
> und gezielt das nachgeschaut werden, was
> zur Benatwortung der Frage notwendig ist.

Wo steht denn in unserem Skript etwas zur strukturellen Induktion?
  

> Pruefungslernen heisst vor allem Konzentration auf das
> Wesentliche und Trainieren der Intuition, damit
> man die Dinge geschickt und kompakt bei sich abspeichern
> kann und trotzdem nicht den Kopf total zu hat.
>  
> Dies als nur einige wohlgemeinte
>  Anmerkungen....

Jo - danke. :-)

Viele Grüße
Bastiane
[cap]


Bezug
                
Bezug
Grundl. Endl. Automaten (2): Antwort
Status: (Antwort) fertig Status 
Datum: 05:03 Mo 20.02.2006
Autor: mathiash


> Hallo Mathias...
>  
> > (1) Definiere die Klasse RE der regulären Ausdrücke über
> > dem Alphabet [mm]\{0,1\}[/mm]
>  >  (zB durch Angabe einer BNF). Definiere die semantische
> > Funktion [mm]\varphi\colon RE\to P(\{0,1\}^{\star}).[/mm]
>  
> [mm](\{0,1\}\cup\{(,),+,^{\star}\}\cup\{\emptyset,\Lambda\},\{\},,r)[/mm]
> mit r:
>  
> [mm]::=0|1|(+)|()^{\star}|()|\emptyset|\Lambda[/mm]
>  
> [mm]\varphi\colon RE\to\cal{P}(\{0,1\}^{\star}):[/mm]
>  
> [mm]\varphi(0)=0[/mm]
>  [mm]\varphi(1)=1[/mm]
>  [mm]\varphi(\emptyset)=\emptyset[/mm]
>  [mm]\varphi(\Lambda)=\{\Lambda\}[/mm] (wieso muss denn hier eine
> Klammer drum?)

Darum !

Wieso muss denn um die 0 und die 1 keine ?

Im Ernst: Von wo nach wo bildet die semantische Funktion ab ? Zu jedem [mm] R\in [/mm] RE ist doch


[mm] \varphi (R)\in P(\{0,1\}^{\star}), [/mm]

also [mm] \varphi (R)\subseteq\{0,1\}^{\star}. [/mm]

Dann musst Du wohl auch

[mm] \varphi (0)=\{0\} [/mm] und so weiter schreiben, oder ?

Konzentration !!!

>  [mm]\varphi(R_1+R_2)=\varphi(R_1)\cup\varphi(R_2)[/mm]
>  [mm]\varphi(R_1R_2)=\varphi(R_1)\varphi(R_2)[/mm]
>  [mm]\varphi(R_1^{\star})=(\varphi(R_1))^{\star}[/mm]
>  
> für R, [mm]R_1, R_2 \in[/mm] RE
>  
> > (2) Zeige: Zu jedem  regulären Ausdruck R gibt es einen
> > äquivalenten NEA A, d.h. mit [mm]L(A)=\varphi[/mm] (R).
>  >  Hinweis dazu: Führe den Beweis durch strukturierte
> > Induktion über den Aufbau der reguláren Ausdrücke.
>  
> Mmh - wie mach ich das denn?
>    

Ähhh....  [kopfschuettel]

... besprechen wir noch.

(Kurzform: Ind.Anf.: Fuer R=0, R=1, [mm] R=\emptyset, R=\Lambda [/mm] jeweils explizit NEA angeben, dann im Induktionsschritt
zB fuer [mm] R=(R_1+R_2) [/mm] annehmen, dass NEA [mm] A_i [/mm] fuer [mm] R_i [/mm] gegeben sind und beschreiben, wie man daraus einen
NEA fuer R konstruiert usw.......)

> > (3) Zeige umgekehrt: Zu jedem DEA A gibt es einen reg.
> > Ausdruck R mit [mm]\varphi[/mm] (R)=L(A).
>  
> Hierfür müsste doch eigentlich folgendes reichen:
>  
> Sei [mm](S,M,s_0,F)[/mm] ein DEA, dann definiere ich eine BNF
> folgendermaßen:
>  für [mm]s\in F[/mm]: [mm]s\to\varepsilon[/mm]
>  für [mm]M(s,\sigma)=p:[/mm]  [mm]s\to\sigma p[/mm]
>  für [mm]M(s,\sigma)=p\in F[/mm]:
> [mm]s\to\sigma.[/mm]
>  

BNF reicht nicht. BNF sind - wie Dir im November im Forum jemand richtig
erklaert hat - kontextfrei, aber i.a. nicht regulär.

Ich sag nur: An einem vergangenen Freitag in HS 1.....

> Aber wie bringe ich das in Worte, was das mit der
> Aufgabenstellung zu tun hat?
>    
> > Teil 2 einer kleinen, für einen ganz speziellen
> > Adressatenkreis geschriebenen Serie.
>  
> Hat dieser Adressatenkreis vielleicht Mächtigkeit 1? ;-)
>    

Das wäre zu testen....

> > Ein Hinweis allgemein, damit nicht Zeit durch etwaige
> > Schwierigkeiten verloren geht:
>  
> Mmh - schneller ginge es doch so: ich kann mit der Aufgabe
> nichts anfangen, also lasse ich es bleiben...
>  

Dann säßen wir heute noch in Höhlen und würden Steine kloppen....
  

> > - Versuch(t), die Fragen so ad hoc zu beantworten. Falls
> > das nicht klappt, so sollte ein Skript
>  >  oder so zur Hand genommen werden, dort dann
> konzentriert
> > und gezielt das nachgeschaut werden, was
> > zur Benatwortung der Frage notwendig ist.
>  
> Wo steht denn in unserem Skript etwas zur strukturellen
> Induktion?
>    

Es heißt ja: ''ein Skript oder so...''.

Im Skript steht dazu nichts. Sind ja auch nur Grundlagen.
Aber Beispiele zur SVI gibt es im Skript tonnenweise.


> > Pruefungslernen heisst vor allem Konzentration auf das
> > Wesentliche und Trainieren der Intuition, damit
>  > man die Dinge geschickt und kompakt bei sich abspeichern

> > kann und trotzdem nicht den Kopf total zu hat.
>  >  
> > Dies als nur einige wohlgemeinte
>  >  Anmerkungen....
>  
> Jo - danke. :-)
>  
> Viele Grüße
>  Bastiane
>  [cap]
>  

Gruss,

Mathias


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Informatik-Training"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]