matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-StochastikGroße Abweichungen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Uni-Stochastik" - Große Abweichungen
Große Abweichungen < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Große Abweichungen: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 13:34 Mo 27.09.2010
Autor: Mija

Aufgabe
Verwenden Sie die allgemeine Markov-Ungleichung
(also [mm] $\IP(X \ge [/mm] a) [mm] \le \bruch{E(h(X))}{h(a)}$ [/mm] )
um zu zeigen, dass für [mm] $X_n$ [/mm] eine Folge unabhängig identisch verteilter Zufallsvariablen gilt:

[mm] $\IP( \bruch{1}{n} \summe_{i=1}^{n} X_i \ge [/mm] a ) [mm] \le [/mm] exp(-nas) * [mm] (pe^{s} [/mm] + (1-p) [mm] )^{n}$ [/mm]

Offenbar gilt $h(a) = [mm] e^{nas}$ [/mm] und $E(h(X)) = [mm] E(e^{nsx}) [/mm] = [mm] E(e^{sx})^{n}$, [/mm] also muss sein
[mm] $E(e^{sx})^{n}= (pe^{s} [/mm] + [mm] (1-p))^{n} [/mm]
Allerdings zweifle ich gerade daran, ob es Sinn der Sache ist $p$ auszurechnen.
Daher: Wie beweise ich diesen Sachverhalt?

        
Bezug
Große Abweichungen: Antwort
Status: (Antwort) fertig Status 
Datum: 16:30 Mo 27.09.2010
Autor: Gonozal_IX

Huhu,


> Offenbar gilt [mm]h(a) = e^{nas}[/mm]

Jop.

> und [mm]E(h(X)) = E(e^{nsx}) = E(e^{sx})^{n}[/mm],
> also muss sein
>  [mm]$E(e^{sx})^{n}= (pe^{s}[/mm] + [mm](1-p))^{n}[/mm]

Öhm... nein.
Beachte, dass du $ [mm] \IP( \bruch{1}{n} \summe_{i=1}^{n} X_i \ge [/mm] a )$ abschätzen sollst und nicht $ [mm] \IP(X \ge [/mm] a) $

Insofern musst du NICHT E[h(X)] berechnen (bzw. was ist X in deinem Fall?).

MFG,
Gono.

Bezug
                
Bezug
Große Abweichungen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:31 Di 28.09.2010
Autor: Mija

Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

Achso, stimmt, wie blöd von mir..

also ist die Ungleichung in diesem Fall

$\IP (\bruch{1}{n} \summe_{i=1}^{n} X_{i} \ge a) \le \bruch{E(h(\bruch{1}{n} \summe_{i=1}^{n} X_{i})}{h(a)}$

mit $h(a) = exp(-nas)$

also $E(h(\bruch{1}{n} \summe_{i=1}^{n} X_{i} )) = (pe^{s} + (1-p))^{n}$

$\gdw E(exp(-ns*\bruch{1}{n} \summe_{i=1}^{n} X_{i} )) = (pe^{s} + (1-p))^{n}$

$\gdw E(exp(-s \summe_{i=1}^{n} X_{i} )) = (pe^{s} + (1-p))^{n}$

$\gdw \integral_{0}^{\infty}{\summe_{i=1}^{n} X_{i} * e^{-s \summe_{i=1}^{n} X_{i} } dx } = (pe^[s} + (1-p))^{n}$

Stimmt das so?
Wie kann ich jetzt weitermachen?

Kann ich statt \summe_{i=1}^{n} X_{i} jetzt einfach x oder n schreiben?
Oder gehe ich in eine völlig falsche Richtung?

Bezug
                        
Bezug
Große Abweichungen: Antwort
Status: (Antwort) fertig Status 
Datum: 11:57 Di 28.09.2010
Autor: Gonozal_IX

Huhu,

auch wenn du [mm] \gdw [/mm] zeigen willst, lassen wir das mal lieber:

> $ [mm] E(h(\bruch{1}{n} \summe_{i=1}^{n} X_{i} [/mm] )) = [mm] (pe^{s} [/mm] + [mm] (1-p))^{n} [/mm] $

edit: Es gilt natürlich $h(a) = [mm] \exp(nas)$, [/mm] ohne das Minus.

Ja, das ist zu zeigen, fangen wir dafür mal links an und formen um.

$ [mm] E(h(\bruch{1}{n} \summe_{i=1}^{n} X_{i} [/mm] )) = [mm] E(\exp(s \summe_{i=1}^{n} X_{i} [/mm] ))$

Verwende nun Potenzgesetze und die Unabhängigkeit, um da nen Produkt von momenterzeugenden Funktionen draus zu zaubern.
Dann sind die [mm] X_i [/mm] garantiert Bernoulli-Verteilt, ansonsten stimmt die Aussage nämlich nicht.

MFG,
Gono.




Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]