matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenZahlentheorieGrößte Zahl im offnenIntervall
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Zahlentheorie" - Größte Zahl im offnenIntervall
Größte Zahl im offnenIntervall < Zahlentheorie < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Größte Zahl im offnenIntervall: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:24 Di 07.04.2015
Autor: Psychopath

Wie lautet die größte Zahl im Intervall ]0,1[ ?
Gut, es gibt sie nicht, aber die Begründung gefällt mir nicht.

Als Begründung lese ich stets, dass man keine größte Zahl in einem offenen Intervall wie ]0,1[ angeben kann, weil man stets eine größere Zahl finden kann. Aber zu 0,999.... (Periode) kann man keine größere finden!

Interessant wäre es zu wissen, ob es damit zusammenhängt, dass 0,999... = 1 ist, also dass 0,999... nicht im Intervall liegt. Oder hat das mit dem Thema nicht zu tun? Mir ist noch eingefallen, dass es nichts damit zu tun haben sollte, da ja das gleiche Problem beim Minimum auftritt.

        
Bezug
Größte Zahl im offnenIntervall: Antwort
Status: (Antwort) fertig Status 
Datum: 14:13 Di 07.04.2015
Autor: Gonozal_IX

Hiho,

>  Gut, es gibt sie nicht, aber die Begründung gefällt mir nicht.

Na zum Glück ist das ja keine Gefallenssache....

> Aber zu 0,999.... (Periode) kann man keine größere finden!

Natürlich nicht, wie du selbst festellt, liegt diese nicht im von dir angegebenem Intervall

> Interessant wäre es zu wissen, ob es damit zusammenhängt, dass 0,999... = 1 ist, also dass 0,999... nicht im Intervall liegt. Oder hat das mit dem Thema nicht zu tun?

Jo, genau so ist es.

> Mir ist noch eingefallen, dass es nichts damit zu tun haben
> sollte, da ja das gleiche Problem beim Minimum auftritt.  

Na wie soll das Minimum denn aussehen?

Aber drehen wir den Spieß doch mal um: Du behauptest hier zwei Dinge, nämlich:

1.) Deine Zahl liegt im offenen Intervall ]0,1[
2.) Es gibt keine größere Zahl.

Zeige deine Behauptungen!

Gruß,
Gono


Bezug
                
Bezug
Größte Zahl im offnenIntervall: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:10 Di 07.04.2015
Autor: Psychopath


> > Interessant wäre es zu wissen, ob es damit zusammenhängt,
> dass 0,999... = 1 ist, also dass 0,999... nicht im
> Intervall liegt. Oder hat das mit dem Thema nicht zu tun?
>
> Jo, genau so ist es.

Bezieht sich das "Jo" auf den ersten Satz oder den zweiten Satz? Wenn es sich auf den ersten Satz bezieht, dann ist es mir der Rest klar.

Gruß und Danke

Bezug
                        
Bezug
Größte Zahl im offnenIntervall: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:31 Di 07.04.2015
Autor: Gonozal_IX

Hiho,

> > Jo, genau so ist es.
>  
> Bezieht sich das "Jo" auf den ersten Satz oder den zweiten
> Satz? Wenn es sich auf den ersten Satz bezieht, dann ist es
> mir der Rest klar.

bezog sich auf den ersten Satz.
Letztendlich kann man 0.999999... und 1.00000.... als zwei unterschiedliche Darstellungen der selben Zahl bezeichnen.

Gruß,
Gono

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]