Größe einer Ladung < Elektrik < Physik < Naturwiss. < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 18:07 Fr 09.04.2010 | Autor: | mathiko |
Hallo allemiteinander!
Ich habe bei folgender Aufgabenstellung ein Problem:
Ich habe vier Ladungen [mm] q_1,q_2,q_3 [/mm] und Q. Q liegt im Koordinatenursprung, die anderen Koordinaten sind:
[mm] q_1(-a;0), q_2(a;0), q_3(0;a). [/mm]
Es gilt [mm] q_1=q_2=q_3=q [/mm] und [mm] q_1>0.
[/mm]
Jetzt soll ich die Größe (Betrag und Vorzeichen) berechnen.
Ich bin bis jetzt soweit gekommen:
Die Kräfte, die auf Q wirken habe ich mit dem Coulomb-Gesetz berechnet:
[mm] \overrightarrow{F_{Q1}}= \bruch{1}{4*\pi*\varepsilon_0}*\bruch{q_1*Q}{a^2}*\overrightarrow{e_{1Q}}
[/mm]
[mm] \overrightarrow{F_{Q2}}= \bruch{1}{4*\pi*\varepsilon_0}*\bruch{q_2*Q}{a^2}*\overrightarrow{e_{2Q}}
[/mm]
[mm] \overrightarrow{F_{Q3}}= \bruch{1}{4*\pi*\varepsilon_0}*\bruch{q_3*Q}{a^2}*\overrightarrow{e_{3Q}}
[/mm]
Da [mm] q_1=q_2 [/mm] ist und beide positiv sind (wg. [mm] q_1>0) [/mm] heben sich die Kräfte gegenseitig auf und auf Q wirkt nur noch [mm] \overrightarrow{F_{Q3}}.
[/mm]
Ich wollte obige Formel nach Q umstellen, nur ist mir der Einheitsvektor im Wege:
[mm] Q*\overrightarrow{e_{3Q}}=\bruch{\overrightarrow{F_{Q3}}}{q_3} *4*\pi*\varepsilon_0
[/mm]
Wenn ich von [mm] \overrightarrow{F_{Q3}} [/mm] den Betrag nehme, fällt dann der Einheitsvektor weg? (Wahrscheinlich banale Frage, aber ich stehe da wirklich auf´m Schlauch...)
Da hätte ich dann den Betrag von Q, aber wie komme ich auf das Vorzeichen?
Also ich weiß, dass [mm] \overrightarrow{e_{3Q}} [/mm] in die entgegengesetzte Richtung von [mm] \overrightarrow{F_{Q3}} [/mm] zeigt, aber ich weiß nicht wie mir das weiterhelfen soll...
Kann mir jemand helfen???
Viele Grüße mathiko
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 18:15 Fr 09.04.2010 | Autor: | Infinit |
Hallo mathiko,
was sollst Du denn berechnen? Das steht nicht so richtig in Deiner Aufgabe drin. Die Wirkungen von q1 und q2 heben sich im Ursprung auf, aber wie gesagt, was soll denn berechnet werden?
Viele Grüße,
Infinit
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 18:26 Fr 09.04.2010 | Autor: | mathiko |
Hallo Infinit!
In der Aufgabe steht nur: "Berechne die Größe (Betrag und Vorzeichen) der Ladung Q."
Da keine konkreten Zahlen gegeben sind, soll das Ergebnis wohl auch nur aus einer Formel für den Betrag von Q und der Ermittlung des Vorzeichens von Q bestehen.
Bei "Vorzeichen" meine ich, dass gefragt ist, ob Q positiv oder negativ ist...
Ah, und auf der Rückseite steht noch, das [mm] q_3 [/mm] in Ruhe verbleibt und die anderen 3 Ladungen ortsfest sind. Aber das hilft mir auch nicht weiter.
Gruß mathiko
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 18:34 Fr 09.04.2010 | Autor: | Infinit |
Hallo mathiko,
das macht keinen Sinn. Irgendeine Bedingung zur Bestimmung der Ladungsgrößen muss doch gegeben sein. Soll keine Kraft auf Q wirken (was so aber nicht gehen würde), soll die Kraft an einem bestimmten Punkt der Ebene Null sein oder was?
Viele Grüße,
Infinit
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 18:53 Fr 09.04.2010 | Autor: | mathiko |
Da [mm] q_3 [/mm] zwar beweglich, aber in Ruhe bleiben soll, ist da die Kraft Null.
Würde ja heißen, dass sich die Kraft, die von Q auf [mm] q_3 [/mm] wirkt, mit den Kräften von [mm] q_1 [/mm] und [mm] q_2 [/mm] ausgleicht.
[mm] q_3 [/mm] und [mm] q_1 [/mm] bzw. [mm] q_2 [/mm] haben ja die gleiche Ladung und stoßen sich also voneinander ab. Das heißt ja, dass Q [mm] q_3 [/mm] anziehen muss, um [mm] q_3 [/mm] an Ort und Stelle zu halten. Dann wäre Q negativ.
Der Betrag von Q ist dann ja gleich der Betrag der Summe der Kräfte von [mm] q_1 [/mm] und [mm] q_2 [/mm] auf [mm] q_3 [/mm] in y-Richtung.
Sehe ich das so richtig???
mathiko
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 19:04 Fr 09.04.2010 | Autor: | Infinit |
Hallo mathiko,
jetzt kommt endlich die Aufgabe raus. Man soll Q so bestimmen, dass keine Kraft auf q3 wirkt. Da der Abstand von q1 bzw. q2 zu q3 gleich ist, wirkt bei gleicher Ladung demzufolge nur eine Resultierende in y-Richtung. Diese Resultierende muss durch Q zu Null gebracht werden. Damit muss die Ladung negativ sein und sie muss betragsmäßig gerade der Resultierenden aus der Wirkung von q1 und q2 entsprechen. Beide Kräfte, aus der Resultierenden und aus der Ladung im Ursprung, kannst Du dann gleichsetzen, um die notwendige Größe der Ladung Q zu ermittteln.
Viele Grüße,
Infinit
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 19:08 Fr 09.04.2010 | Autor: | mathiko |
Da stimmt ja mit meinen Ausführungen überein...
Super! Vielen Dank für deine Geduld!!!!!!!!!!!!!!!
Grüße von mathiko
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 18:58 Fr 09.04.2010 | Autor: | Infinit |
Hallo,
Kommentare dazu bei Deiner neuen Frage.
VG,
Infinit
|
|
|
|