matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenMathe Klassen 8-10Grenzwertverhalten
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Mathe Klassen 8-10" - Grenzwertverhalten
Grenzwertverhalten < Klassen 8-10 < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Grenzwertverhalten: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:41 Mi 30.11.2011
Autor: luna19

Hallo :)

Wir sollten die Grenzwerte von folgender Funktion

[mm] betrachten:f(x)=\bruch{1}{x} [/mm]

Ich bin so  weit,dass ich weiß dass man den Definitionsbereich bestimmen muss.

Also:  [mm] D={x/o}=\IR [/mm] der Definitionsbereich entspricht allen reelen Zahlen außer der Null.

Und dann soll man Werte bestimmen,die links und rechts ganz nahe bei der Null liegen.

Mithilfe dieser Werte kann man dann die Limes funktionen aufstellen und  da komme ich nicht weiter.Ich verstehe nicht,was Limes-funktionen sind und was sie bezwecken sollen.

Vielen Dank

        
Bezug
Grenzwertverhalten: Antwort
Status: (Antwort) fertig Status 
Datum: 20:54 Mi 30.11.2011
Autor: Schadowmaster

moin luna,

Ich nehme an du sollst dir hier ein paar Grenzwerte angucken.

Um einen Grenzwert aufzustellen brauchst du zuerst einen Punkt, an dem deine Funktion nicht definiert ist.
An Punkten, an denen die Funktion definiert ist, geht es rein theoretisch auch, aber das hat andere Anwendungen und deshalb geh erstmal davon aus, dass du dich nur um Stellen zu kümmern brauchst, wo f nicht definiert ist.
Nehmen wir mal als Beispiel die 0:
Es ist $f(0)$ nicht definiert, aber wenn du dir den Graphen der Funktion anguckst kannst du eine gewisse Vermutung aufstellen wie sich f verhält, wenn du sehr nahe an die 0 ran gehst.
Allerdings musst du aufpassen, denn (guck dir dafür unbedingt den Graph an!) ob du "von links", also aus Richtung der negativen Zahlen gegen die 0 gehst verhält sich $f$ anders als von rechts.

Weiterhin ist bei einer Funktion immer interessant was passiert, wenn x verdammt groß wird und was, wenn es verdammt klein wird, also formell wenn "x gegen unendlich strebt".

Kommen wir dann nochmal zu den Schreibweisen:
[mm] $\limes_{x \to \infty} [/mm] f(x)$  -- was passiert, wenn x sehr groß wird?
[mm] $\limes_{x \to -\infty} [/mm] f(x)$ -- was passiert, wenn x sehr klein wird?
[mm] $\limes_{x \uparrow 0} [/mm] f(x)$ -- was passiert, wenn man sich der 0 von unten nähert?
[mm] $\limes_{x \downarrow 0} [/mm] f(x)$ -- was passiert, wenn man sich der 0 von oben nähert?

Achte auch darauf, dass bei den letzen beiden der Pfeil nicht gerade ist sondern nach oben bzw. nach unten zeigt, jenachdem ob du von unten oder von oben gegen die Zahl läufst.

Da du ja bereits Werte gesucht hast, die nahe bei der 0 liegen, kann ich dir ja verraten, dass [mm] $\limes_{x \to \infty} [/mm] f(x) = 0$ ist.

Was genau du jetzt machen sollst musst du dir selbst überlegen.
Man könnte hier einiges beweisen, man könnte noch einiges zu schreiben, aber die Frage ist was genau du schon hattest und was genau von dir erwartet wird, und das weißt du ja wahrscheinlich am besten. ;)

lg

Schadow

Bezug
                
Bezug
Grenzwertverhalten: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:17 Do 01.12.2011
Autor: luna19

hallo :)

1.$ [mm] \limes_{x \to \infty} [/mm] f(x) $ = 0    was passiert, wenn x sehr groß wird?

Der y-Wert wird annähernd 0


2.$ [mm] \limes_{x \to -\infty} [/mm] f(x) $ =infty    was passiert, wenn x sehr klein wird?

Der y-Wert wird unendlich groß


3.$ [mm] \limes_{x \uparrow 0} [/mm] f(x) $ -- was passiert, wenn man sich der 0 von unten nähert?

Das verstehe ich nicht so ganz,unser Lehrer hat irgendetwas von links und rechts gesagt.
Ich weiß nicht ob,das richtig ist :

[mm] \limes_ {f(x)\rightarrow\infty} [/mm]

[mm] x{\rightarrow\ 0} [/mm]

Also,wenn die x-Werte sich von links dem Grenzwert 0 nähern,dann werden die y-Werte negativ  unendlich.


Danke :)

Wir brauchen die Grenzwerte für die Ableitung und müssen die Grenzwerte auch zeichnen können.

Bezug
                        
Bezug
Grenzwertverhalten: Antwort
Status: (Antwort) fertig Status 
Datum: 22:12 Do 01.12.2011
Autor: Valerie20

Hi!

> Also,wenn die x-Werte sich von links dem Grenzwert 0
> nähern,dann werden die y-Werte negativ  unendlich.

Das stimmt.
Mach dir bevor du die Grenzwerte bestimmst am besten eine kleine Skizze der Funktion. Damit vermeidest du Fehler bei den Grenzwertberechnungen.

[mm]\limes_{x \downarrow 0} f(x)[/mm]=[mm]-\infty[/mm]

[mm]\limes_{x \uparrow 0} f(x)[/mm]=[mm]\infty[/mm]

Valerie


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]